Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(4< 5\Leftrightarrow\sqrt{4}< \sqrt{5}\Leftrightarrow2< \sqrt{5}\Leftrightarrow2-\sqrt{5}< 0\)
Do đó hàm số \(y=\left(2-\sqrt{5}\right)x-2\)nghịch biến trên \(ℝ\)
hàm số trên đồng biến vì hệ số của x là
\(3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2>0\)
Cách đơn giản : Xét hệ số góc \(3-2\sqrt{2}\)ta có \(9>8\Rightarrow3>2\sqrt{2}\Leftrightarrow3-2\sqrt{2}>0\)
Vậy hàm số trên đồng biến
Cách không đơn giản : Xét \(y=f\left(x\right)=\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)
Hàm số trên xác định với mọi x . Lấy các giá trị x1 , x2 sao cho x1 < x2
Ta có : \(f\left(x_1\right)-f\left(x_2\right)=\left(3-2\sqrt{2}\right)x_1+\sqrt{2}-1-\left[\left(3-2\sqrt{2}\right)x_2+\sqrt{2}-1\right]\)
\(=\left(3-2\sqrt{2}\right)x_1+\sqrt{2}-1-\left(3-2\sqrt{2}\right)x_2-\sqrt{2}+1\)
\(=\left(3-2\sqrt{2}\right)\left(x_1-x_2\right)< 0\)( vì x1 < x2 )
=> f(x1) < f(x2) . Vậy hàm số đã cho đồng biến
Hàm số y = (3 - 2 )x + 1 có hệ số a = 3 - 2 , hệ số b = 1
Ta có: a = 3 - 2 > 0 nên hàm số đồng biến trên R
Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
a)
Ta thấy \(\sqrt{3}-2< 0\) nên hàm số trên nghịch biến trên R
b)
\(\sqrt{3}-7=\left(\sqrt{3}-2\right)x+5\)
\(\Leftrightarrow\sqrt{3}-12=\left(\sqrt{3}-2\right)x\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}-12}{\sqrt{3}-2}\)
Vì \(\sqrt{2}-1=\sqrt{2}-\sqrt{1}>0\)
nên hàm số \(y=\left(\sqrt{2}-1\right)x-3\) đồng biến trên R
Hàm số y =(\(\sqrt{ }\)2 -1)x-3 là đồng biến trên R. Vì Hàm số trên có tính chất :
- Đồng biên trên R với a > 0
- Nghịch biến trên R với a < 0