Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Nhìn vào đồ thị của hàm số y = f '(x) ta nhận thấy đồ thị hàm số đi qua các điểm (1;0), (3;0), (2;1) nên có hệ phương trình sau:
Nên đồ thị hàm số y = f(x) có điểm cực tiểu có tung độ bằng 2 3
Đáp án D
Dựa vào hình vẽ, ta thấy rằng
+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3
Và f '(x) đổi dấu từ - → + khi đi qua x 1 , x 3 ⇒ Hàm số có 2 điểm cực tiểu, 1 điểm cực đại
+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1 đồng biến trên x 1 ; x 2 (1) sai
+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3 (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5 (chứa khoảng (3;5)) ⇒ 2 ; 3 đúng
Vậy mệnh đề 2,3 đúng và 1, 4 sai.
Ta có
Đối chiếu với x ∈ - 2 π ; 2 π nhận Qua tất cả các điểm này thì y′ đều đổi dấu, do đó hàm số có tất cả 7 điểm cực trị trên khoảng (−2π;2π).
Chọn đáp án C.
Mẹo TN: Chọn thỏa mãn, khi đó MODE 7 trên khoảng (−2π;2π) có 7 lần đổi dấu tức có 7 điểm cực trị trên khoảng (−2π;2π).
Chọn đáp án C.
Đáp án A.
Phương pháp: Tính g’(x) tìm các nghiệm của phương trình g’(x) = 0
Điểm x0 được gọi là điểm cực tiểu của hàm số y = g(x) khi và chỉ khi g’(x0) = 0 và qua điểm x = x0 thì g’(x) đổi dấu từ âm sang dương.
Cách giải:
Khi x<1 ta có:
Khi x>1 ta có:
Qua x = 1, g’(x) đổi dấu từ dương sang âm => x = 1 là điểm cực đại của đồ thị hàm số y = g(x)
Chứng minh tương tự ta được x = –1 là điểm cực tiểu và x = –3 là điểm cực đại của đồ thị hàm số y = g(x)
Đáp án B
f'(x) đổi dấu 1 lần, suy ra đồ thị hàm số f(x) có 1 điểm cực trị.
Điểm cực tiểu của đồ thị hàm số là (1;−2).
Chọn đáp án B.