Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+TXĐ: X\(\in\)R
+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)
+y''=6(x-1)=> y' = 0 khi x = 1;y=2
+
x | -\(\infty\) 0 1 2 +\(\infty\) |
y' | + 0 - - 0 + |
y |
ta có \(y'=3mx^2-6x+m-2\)để hàm số nghịch biến trên R thì
y'<0 với mọi x thuộc R
suy ra \(\begin{cases}m
Ta có
\(y'=3mx^2-6x+m-2\) để hàm số nghịc biến trên R thì y'<0 với mọi x thuộc R
suy ra \(\Delta=9-\left(m-2\right)3m
Đáp án C
Ta có y ' = m 2 − 4 x + m 2 để hàm số nghịch biến trên − ∞ ; 1 thì điều kiện tương đương là m 2 − 4 < 0 − m ≥ 1 ⇒ − 2 < m ≤ − 1
Đáp án D
Ta có y ' = cos x − m .
Hàm số nghịch biến trên R
⇔ y ' ≤ 0 , ∀ x ∈ ℝ ⇒ cos x − m ≤ 0 ∀ x ∈ ℝ ⇔ cos x ≤ m ∀ x ∈ ℝ ⇒ m ≥ M a x ℝ cos x = 1.
ta có \(y'=\frac{mx^2+4mx+14}{\left(x+2\right)^2}\) để hàm số nghịch biến trên \(\left(1;+\infty\right)\) thì y'<0 với mọi x thuộc khoảng đó suy ra
\(\begin{cases}m