K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Trục đối xứng của hàm số là: \(x = \frac{5}{2}.\)

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)

Chọn C.

12 tháng 1 2021

C và D đều sai

NV
8 tháng 3 2023

Từ giả thiết ta có:

\(\left\{{}\begin{matrix}a< 0\\\dfrac{4ab-4}{4a}=4\\-\dfrac{1}{a}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)

\(\Rightarrow\) (P) cắt Oy tại điểm có tung độ bằng 3

8 tháng 3 2023

Tuyệt vời quá anh Lâm ơi~

yeu

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

Lấy \({x_1},{x_2} \in \left( {0; + \infty } \right)\) sao cho \({x_1} < {x_2}\).

Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)

\({x_1},{x_2} \in \left( {0; + \infty } \right) \Rightarrow {x_1}{x_2} > 0\)

\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\).

b) Lấy \({x_1},{x_2} \in \left( { - \infty ;0} \right)\) sao cho \({x_1} < {x_2}\).

Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)

\({x_1},{x_2} \in \left( { - \infty ;0} \right) \Rightarrow {x_1}{x_2} > 0\)(Cùng dấu âm nên tích cũng âm)

\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Vậy hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Vẽ đồ thị \(y = 3x + 1;y =  - 2{x^2}\)

a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)

b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y =  - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)

Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y =  - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)

10 tháng 10 2021

a) Đk:\(x\in R\)

TH1:Xét \(x\in\left(3;+\infty\right)\)

Lấy \(x_1;x_2\in\left(3;+\infty\right)\) thỏa mãn \(x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{2x_1^2-4x_1+3-\left(2x_2^2-4x_2+3\right)}{x_1-x_2}\)\(=2\left(x_1+x_2\right)-4\)

Do \(x_1;x_2\in\left(3;+\infty\right)\)\(\Rightarrow2\left(x_1+x_2\right)>12\Leftrightarrow2\left(x_1+x_2\right)-4>8>0\)

\(\Rightarrow I>0\)

Hàm đồng biến trên \(\left(3;+\infty\right)\)

TH2:Xét \(x\in\left(-10;1\right)\)

Lấy \(x_1;x_2\in\left(-10;1\right):x_1\ne x_2\)

Xét \(I=2\left(x_1+x_2\right)-4\)

Do \(x_1< 1;x_2< 1\Rightarrow2\left(x_1+x_2\right)< 4\Rightarrow I=2\left(x_1+x_2\right)-4< 0\)

Hàm nb trên khoảng \(\left(-10;1\right)\)

b)Làm tương tự,hàm nb trên \(\left(1;+\infty\right)\) và đb trên \(\left(-10;-2\right)\)

c)Đk: \(x\in R\backslash\left\{2\right\}\)

=>Hàm số xác định trên \(\left(-\infty;2\right)\)

Lấy \(x_1;x_2\in\left(-\infty;2\right):x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{x_1}{x_1-2}-\dfrac{x_2}{x_2-2}}{x_1-x_2}=\dfrac{-2}{\left(x_1-2\right)\left(x_2-2\right)}\)

Do \(x_1;x_2< 2\Rightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)

\(\Rightarrow I=-\dfrac{2}{\left(x_1-2\right)\left(x_2-2\right)}< 0\)

Hàm nb trên ​\(\left(-\infty;2\right)\)

d)\(I=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)

Hàm đb trên \(\left(-1;+\infty\right)\) ; \(\left(-3;-2\right)\)

e)TXĐ:D=R

Lấy \(x_1;x_2\in\left(0;+\infty\right):x_1< x_2\)

​​\(T=f\left(x_1\right)-f\left(x_2\right)=x_1^{2020}+x_1^2-3-x_2^{2020}-x_2^2+3=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2\)

Do \(x_1< x_2\Rightarrow x_1^{2020}< x_2^{2020};x_1^2< x_2^2\)

\(\Rightarrow T=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2< 0\)

Hàm đb trên \(\left(0;+\infty\right)\)

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Xét hai số bất kì \({x_1},{x_2} \in \left( { - \infty ;0} \right)\) sao cho \({x_1} < {x_2}\).

Ta có: \(f\left( {{x_1}} \right) = 6x_1^2;f\left( {{x_2}} \right) = 6x_2^2\)

\(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = 6x_1^2 - 6x_2^2\)\( = 6\left( {{x_1} - {x_2}} \right)\left( {{x_1} + {x_2}} \right)\)

\({x_1} < {x_2} \Rightarrow {x_1} - {x_2} < 0\)

\({x_1} < 0;{x_2} < 0 \Rightarrow {x_1} + {x_2} < 0\)

\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0\)

Vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\).