K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

ta có \(y'=\frac{m^2-9}{\left(x+m\right)^2}\) để hàm số đồng biến trên \(\left(2;+\infty\right)\) với m khác 3 thì y'>0 với mọi \(x\in\left(2;+\infty\right)\)

\(\Rightarrow m^2-9>0\) \(\Rightarrow m\in\left(-\infty;3\right)\cup\left(3;+\infty\right)\)

vậy ta đc đk của m

16 tháng 4 2017

mấy bn giúp mk với,pleaseeeeeeeeeeeeee

15 tháng 11 2017

Đề không sai đâu !!

18 tháng 10 2018

Bài a làm gì có z

26 tháng 1 2016

+TXĐ: X\(\in\)R

+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)

+y''=6(x-1)=> y' = 0 khi x = 1;y=2

+

x       -\(\infty\)                   0                      1                        2                        +\(\infty\)
y'                 +            0           -                           -        0       +
y

 

26 tháng 1 2016

2.  y' = 3x2 - 6x + m <0 khi x thuộc ( -1; 3)  => m/3 =-3 =>  m =-9

a: \(F\left(x\right)=x^4+6x^3+2x^2+x-7\)

\(G\left(x\right)=-4x^4-6x^3+2x^2-x+6\)

b: h(x)=f(x)+g(x)

\(=x^4+6x^3+2x^2+x-7-4x^4-6x^3+2x^2-x+6\)

\(=-3x^4+4x^2-1\)

c: Đặt h(x)=0

\(\Leftrightarrow3x^4-4x^2+1=0\)

\(\Leftrightarrow\left(3x^2-1\right)\left(x^2-1\right)=0\)

hay \(x\in\left\{1;-1;\dfrac{\sqrt{3}}{3};-\dfrac{\sqrt{3}}{3}\right\}\)

23 tháng 2 2016

a) Theo đề bài, ta có :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)

2y+11-13-35-515-15
2y0-22-44-614-16
y0-11-22-37-8
x30-3010-106-62-2

b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)

5x-1-14-6
5x05-5
x01-1
y-6015-10

 

28 tháng 9 2015

đúng nhé. em dựa theo lý thuyết bên trên ấy nhé

28 tháng 9 2015

\(y'=3x^2-6x+m\)

để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R

suy ra \(\begin{cases}3>0\\\Delta=9-3m<0\end{cases}\) suy ra m>3 

vậy m>3 là điều cần tìm

Chỉ dữ kiện như vậy thì không đủ để tìm x,y , vì có rất nhiều giá trị thỏa mãn.

11 tháng 8 2015

a) TXĐ: D = [0; + \(\infty\))

\(y'=1+\frac{1}{2\sqrt{x}}\) > 0 với mọi x thuộc D

BBT:  x y' y 0 +oo + 0 +oo

Từ BBT => Hàm số đồng biến trên D ;

y đạt cực tiểu bằng 0 tại x = 0

Hàm số không có cực đại

b) TXĐ : D = = [0; \(\infty\))

\(y'=1-\frac{1}{2\sqrt{x}}\)

\(y'=0\) <=> \(2\sqrt{x}=1\) <=> \(x=\frac{1}{4}\)

x y' y 0 +oo + 0 +oo -1/4 1/4 0 -

Từ BBT: Hàm số đồng biến trên (1/4; + \(\infty\)); nghịch biến trên (0;1/4)

Hàm số đạt cực tiểu = -1/4 tại  x = 1/4

Hàm số không có cực đại

20 tháng 3 2016

Thay a,b,c lần lượt vào biểu thức...

Tính được kết quả:

a) A= \(-\frac{7}{10}\)

b) B= \(-\frac{2}{7}\)

c) C= 0

20 tháng 3 2016

a) Thay a= \(-\frac{6}{5}\)vào BT A ta có:

\(\left(-\frac{6}{5}\right).\frac{1}{2}-\left(-\frac{6}{5}\right).\frac{2}{3}+\left(-\frac{6}{5}\right).\frac{3}{4}\)\(-\frac{7}{10}\)

Các bài dưới lần lượt thế thôi bạn