K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Do \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right) = \left( {\frac{\pi }{2} - 4\pi ;\frac{{3\pi }}{2} - 4\pi } \right)\) nên hàm số \(y = \sin x\) nghịch biến trên khoảng \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Do \(\left( { - 2\pi ; - \pi } \right) = \left( { - 2\pi ;\pi  - 2\pi } \right)\) nên hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(\dfrac{\sqrt{3}}{2}< 1;\dfrac{\sqrt[3]{26}}{3}< 1;\pi>1;\dfrac{\sqrt{15}}{4}< 1\)

Hàm số đồng biến là: \(log_{\pi}x\)

Hàm số nghịch biến là: \(\left(\dfrac{\sqrt{3}}{2}\right)^x;\left(\dfrac{\sqrt[3]{26}}{3}\right)^x;log_{\dfrac{\sqrt{15}}{4}}x\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Hàm số nghịch biến trên khoảng \(\left( {\pi ;2\pi } \right)\) là:\(y = \cos x\)

Chọn B

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     y = sinx

-        Khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{7\pi }}{2}} \right)\)

+ Vẽ đồ thị hàm số:

+ Đồng biến trên khoảng \(\left( { - \frac{{9\pi }}{2}; - 4\pi } \right)\)

+ Nghịch biến trên khoảng; \(\left( { - 4\pi ; - \frac{{7\pi }}{2}} \right)\)

-        Khoảng \(\left( {\frac{{21\pi }}{2};\frac{{23\pi }}{2}} \right)\)

+ Vẽ đồ thị hàm số:

+ Đồng biến trên khoảng: \(\left( {11\pi ;\frac{{23\pi }}{2}} \right)\)

+ Nghịch biến trên khoảng: \(\left( {\frac{{21\pi }}{2};11\pi } \right)\)

8 tháng 9 2021

Trên \(\left(-\dfrac{\pi}{2}+k.2\pi;\dfrac{\pi}{2}+k.2\pi\right)\) chọn 2 giá trị của x (x1 và x2) sao cho x1 > x2

Xét f(x1) - f(x2) = sinx1 - sinx2

 = 2cos\(\dfrac{x_1+x_2}{2}\) . sin \(\dfrac{x_1-x_2}{2}\)

Do \(\dfrac{x_1+x_2}{2}\in\left(0;\dfrac{\pi}{2}\right)\)

⇒ cos\(\dfrac{x_1+x_2}{2}\) > 0 

Mà \(sin\dfrac{x_1-x_2}{2}\) > 0 

nên f(x1) - f(x2) > 0 

Vậy đồng biến

Nghịch biến tương tự

8 tháng 9 2021

tại sao \(\dfrac{x_1+x_2}{2}\in\left(0;\dfrac{\pi}{2}\right)\)ạ ?

 

y=sin x đồng biến trên \(\left(-\dfrac{\Omega}{2}+k2\Omega;\dfrac{\Omega}{2}+k2\Omega\right)\)

=>Hàm số y=sin x không thể đồng biến trên cả khoảng \(\left(0;\dfrac{5}{6}\Omega\right)\) được

=>Loại A

\(y=cosx\) đồng biến trên khoảng \(\left(-\Omega+k2\Omega;k2\Omega\right)\)

=>Hàm số y=cosx cũng không thể đồng biến trên khoảng \(\left(0;\dfrac{5}{6}\Omega\right)\)

=>Loại B

\(x\in\left(0;\dfrac{5}{6}\Omega\right)\)

=>\(x+\dfrac{\Omega}{3}\in\left(\dfrac{\Omega}{3};\dfrac{4}{3}\Omega\right)\)

=>\(y=sin\left(x+\dfrac{\Omega}{3}\right)\in\left[-\dfrac{\sqrt{3}}{2};\dfrac{\sqrt{3}}{2}\right]\)

=>Khi x tăng thì y chưa chắc tăng

=>Loại D

=>Chọn C 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Hàm số y = sinx đồng biến trên khoảng: \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\)

Chọn C

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Vẽ đồ thị:

\(3\sin x + 2 = 0\) trên đoạn \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\) có 5 nghiệm

b)     Vẽ đồ thị:

\(\cos x = 0\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) có 6 nghiệm