Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong một tam giác tổng hai cạnh luôn lớn hơn 2 cạnh kia
=>nếu 2 cạnh =2 thì sẽ ko lớn hơn 7
=> cạnh còn lại là 7
=>chu vi của tam giác là
7+7+2=16(cm)
trong một tam giác tổng hai cạnh luôn lớn hơn 2 cạnh kia
=>nếu 2 cạnh =2 thì sẽ ko lớn hơn 7
=> cạnh còn lại là 7
=>chu vi của tam giác là
7+7+2=16(cm)
Gọi độ dài 3 cạnh lần lượt là a,b,c
Theo đề, ta có: 5a=7b và 7b=8c
=>a/7=b/5 và b/8=c/7
=>a/56=b/40=c/35
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{56}=\dfrac{b}{40}=\dfrac{c}{35}=\dfrac{a+b+c}{56+45+35}=\dfrac{31}{136}\)
=>a=217/17cm; b=155/17cm; c=1085/136cm
Giải thích các bước giải:
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b)
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
vậy chu vi của tam giác DEF = 60
Giải thích các bước giải:
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b)
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
vậy chu vi của tam giác DEF = 60
Giải thích các bước giải:
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b)
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
vậy chu vi của tam giác DEF = 60
Giải thích các bước giải:
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b)
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
vậy chu vi của tam giác DEF = 60
Ta có: AB // CD (gt)
Suy ra ∠(ACD) =∠(CAB) ̂(hai góc so le trong)
BC // AD (gt)
Suy ra: ∠(CAD) =∠(ACB) (hai góc so le trong)
Xét ΔABC và ΔCDA, ta có:
∠(ACB) = ∠(CAD) (chứng minh trên)
AC cạnh chung
∠(CAB) = ∠(ACD) (chứng minh trên)
Suy ra: ΔABC= ΔCDA (g.c.g)
Suy ra: CD = AB = 2,5cm và AD = BC = 3,5 cm
Chu vi ΔACD là : AC + AD + CD = 3 + 3,5 + 2,5 = 9 cm
Gọi tam giác đều đã cho là tam giác ABC.
Kẻ đường cao AH . Tam giác ABC đều nên AH là đường trung tuyến => H là trung điểm của BC => BH = BC/2 = AB/2
Áp dụng ĐL Pi ta go trong tam giác vuông ABH có: AH2 = AB2 - BH2 = AB2 - AB2/4 = 3AB2/4 => AH = \(\frac{AB\sqrt{3}}{2}\)
S(ABC) = AH.BC/2 = \(\frac{AB^2\sqrt{3}}{4}=4\sqrt{3}\) => AB2 = 16 => AB = 4 cm
=> Chu vi tam giác đều ABC là: AB .3 = 12 cm
+) Tổng quát : Kí hiệu a là cạnh của tam giác đều => S tam giác đều = \(\frac{a^2\sqrt{3}}{4}\) (*)
+) Chu vi lục giác đều bằng 12 cm => cạnh của lục giác đều là: 12 : 6 = 2 cm
Chia lục giác đều thành 6 tam giác đều bằng nhau có cạnh bằng cạnh của lục giác đó
Áp dụng công thức (*) => Diện tích 1 tam giác = \(\frac{4\sqrt{3}}{4}=\sqrt{3}\) cm2
Diện tích lục giác = 6 x Diện tích 1 tam giác = \(6\sqrt{3}\) cm2
ĐS:...