![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì hai tiếp tuyến chung của đường tròn (O) và (O’) cắt nhau tại A nên O,O’ và A thẳng hàng
Độ dài dây cua-roa mắc qua hai ròng rọc là:
l = MN + PQ + l 1 + l 2 = 2MN + l 1 + l 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi C là vị trí của máy bay.
Kẻ CH⊥ABCH⊥AB
Trong tam giác vuông ACH, ta có:
AH=CH.cotgˆA(1)AH=CH.cotgA^(1)
Trong tam giác vuông BCH, ta có:
BH=CH.cotgˆB(2)BH=CH.cotgB^(2)
Từ (1) và (2) suy ra:
(AH+BH)=CH.cotgˆA+CH.cotgˆB(AH+BH)=CH.cotgA^+CH.cotgB^
Suy ra:
CH=ABcotgˆA+cotgˆB=ABcotg40∘+cotg30∘≈102,606(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: ΔO'AC cân tại O'
nên \(\widehat{CO'A}=180^0-2\cdot\widehat{A}\)(1)
Ta có: ΔOBA cân tại O
nên \(\widehat{BOA}=180^0-2\cdot\widehat{A}\)(2)
Từ (1) và (2) suy ra \(\widehat{CO'A}=\widehat{BOA}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên O'C//OB
![](https://rs.olm.vn/images/avt/0.png?1311)
Hướng dẫn giải:
∆OAB là tam giác đều có cạnh bằng R = 5,1cm. Áp dụng công thức tính diện tích tam giác đều cạnh a là a2√44 ta có
S∆OBC = SΔOBC=R2√34 (1)
Diện tích hình quạt tròn AOB là:
π.R2.6003600=πR26 (2)
Từ (1) và (2) suy ra diện tích hình viên phân là:
πR26−R2√34=R2(π6−√34)
Thay R = 5,1 ta có Sviên phân ≈ 2,4 (cm2)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì hai vệ tinh cùng cách mặt đất 230 km nên tam giác AOB cân tại O.
Ta có: OA = R + 230
= 6370 + 230 = 6600 (km)
Trong tam giác AOB ta có: OH ⊥ AB
\(\Rightarrow\): HA = HB = AB/2 = 2200/2 = 1100 (km)
Áp dụng định lí Pi-ta-go vào tam giác vuông AHO, ta có:
OA2 = AH2 + OH2
\(\Rightarrow\): OH2 = OA2 – AH2
\(\Rightarrow\) :OH = ≈ 6508 (km)
Vì OH > R nên hai vệ tinh nhìn thấy nhau.