K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2023

 �=613m=136
 

a, \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)

\(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-8m^2-4m+4\)

\(=m^2+2m+1+4\)

\(=\left(m+1\right)^2+4\) \(\ge4\)với \(\forall m\)

\(\Rightarrow\)Phương trình luôn có \(2n_0\)phân biệt với mọi m

b,

Theo vi-ét :

\(\hept{\begin{cases}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{cases}}\)

\(B=x_1^2+x_2^2-3x_1x_2\)

\(=\left(x_1+x_2\right)^2-5x_1x_2\)

\(=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-10m^2-5m+5\)

\(=-m^2+m+6\)

\(=-\left(m^2-m-6\right)\)

\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{1}{4}-6\right]\)

\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{25}{4}\right]\)

\(=-\left(m-\frac{1}{2}\right)^2+\frac{25}{4}\)

Vậy GTLN  \(B=\frac{25}{4}\)khi \(-\left(m-\frac{1}{2}\right)^2=0\) \(\Leftrightarrow m=\frac{1}{2}\)

7 tháng 3 2022

a, \(\Delta\)' =(m+3)\(^2\)-(m\(^2\)+6m)=m\(^2\)+6m+9-m\(^2\)-6m=9>0 với mọi m .Pt luôn có 2 no pb

b, Áp dụng hệ thức vi-ét có: x\(_1\)+x\(_2\)=-2(m+3)    ;   x\(_1\)x\(_2\)=m\(^2\)+6m     (I)

Để (2x\(_1\)+1)(2x\(_2\)+1)=13\(\Leftrightarrow\) 4x\(_1\)x\(_2\)+2(x\(_1\)+x\(_2\))+1=13       (*)

Thay (I) vào (*) có : 4(m\(^2\)+6m)-4(m+3)+1=13\(\Leftrightarrow\)4m\(^2\)+20m-24=0\(\Leftrightarrow\)m=1; m=-6

19 tháng 5 2023

Đáp số:  �=1;�=−6m=1;m=6

20 tháng 3 2021

a, \(x^2-2\left(m+1\right)x+m^2+m+1=0\)

Ta có : \(\left(-2m-2\right)^2-4\left(m^2+m+1\right)=4m^2+8m+4-4m^2-4m-4\)

\(=4m\)Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay \(4m>0\Leftrightarrow m>0\)

b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+m+1\end{cases}}\)

\(x_1^2+x_2^2=3x_1x_2-1\)

mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=\left(2m+2\right)^2\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-\left(m^2+m+1\right)=3m^2+7m+3\)

hay \(3m^2+7m+3=3\left(m^2+m+1\right)-1\)

\(\Leftrightarrow3m^2+7m+3=3m^2+3m+2\Leftrightarrow4m+1=0\Leftrightarrow m=-\frac{1}{4}\)

30 tháng 6 2021

a) Đường thẳng (d) đi qua điểm A(1 ;0) => x = 1; y = 0 

Do đó: 0 = 2m.1 + 1 <=> 2m = -1 <=> m = -1/2

b) Phương trình hoành độ giao điểm giữa đường thẳng (d) và hàm số (P): y = 2x2 là:

   2x2 = 2mx + 1  <=> 2x2 - 2mx - 1 = 0

\(\Delta'=\left(-m\right)^2+2=m^2+2>0\)

=> phương trình luôn có 2 nghiệm phân biệt

Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-\frac{1}{2}\end{cases}}\)

Theo bài ra, ta có: \(\hept{\begin{cases}x_1< x_2\\\left|x_2\right|-\left|x_1\right|=2021\end{cases}}\)

<=> \(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2021^2\)

<=> \(x_1^2+x_2^2-2\left|x_1x_2\right|=2021^2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|-\frac{1}{2}\right|=2021^2\)

<=> \(m^2+\frac{2.1}{2}-1=2021^2\)

<=> \(m^2=2021^2\)

<=> \(x=\pm2021\)

Vậy với m = \(\pm\)2021 để (d) vắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thõa mãn x1 < x2 và |x2| - |x1| = 2021

20 tháng 3 2021

a, Thay m = 3 vào phương trình trên ta được : \(PT\Leftrightarrow x^2-3x-4=0\)

Ta có : \(\Delta=9+16=25>0\)

phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{3-5}{2}=-1;x_2=\frac{3+5}{2}=4\)

Vậy với m = 3 thì x = -1 ; 4 

b, Theo vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)

Ta có : \(x_1\left(x_2^2+1\right)+x_2\left(x_1^2+1\right)>6\)

\(\Leftrightarrow x_1x_2^2+x_1+x_2x_1^2+x_2>6\)

\(\Leftrightarrow-4x_2+m-4x_1>6\)

\(\Leftrightarrow-4\left(x_2+x_1\right)+m>6\)

\(\Leftrightarrow-3m>6\Leftrightarrow m< -2\)