Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) * Lớp 10C:
* Lớp 10D:
b) Kết quả lớp 10D có độ lệch chuẩn nhỏ hơn kết quả lớp 10C nên kết quả lớp 10D đồng đều hơn.
Nhận xét: Số trung bình cộng điểm thi Toán của lớp 10A cao hơn lớp 10B nên có thể nói lớp 10A có kết quả thi môn Toán tốt hơn lớp 10B.
a) Bảng phân bố tần số và tần suất:
Nhóm cá thứ I | Tần số | Tần suất |
---|---|---|
[630;635) | 1 | 4,2% |
[635;640) | 2 | 8,3% |
[640;645) | 3 | 12,5% |
[645;650) | 6 | 25% |
[650;655] | 12 | 50% |
Cộng | 24 | 100% |
b) Bảng phân bố tần số và tần suất:
Nhóm cá thứ I | Tần số | Tần suất |
---|---|---|
[638;642) | 5 | 18,52% |
[642;646) | 9 | 33,33% |
[646;650) | 1 | 3,7% |
[650;654) | 12 | 44,45% |
Cộng | 27 | 100% |
c) Biểu đồ tần suất hình cột:
- Đường gấp khúc tần suất
d) Biểu đồ tần số
- Đường gấp khúc tần số
e) * Xét bảng phân bố ở câu a)
- Số trung bình:
- Phương sai:
- Độ lệch chuẩn:
* Xét bảng phân bố ở câu b):
- Số trung bình:
- Phương sai:
- Độ lệch chuẩn:
Nhận thấy s2 < s1 nên nhóm cá thứ hai có khối lượng đồng đều hơn.
a) Bảng phân bố tần số và tần suất:
b) Bảng phân bố tần số và tần suất:
c) Biểu đồ tần suất hình cột:
- Đường gấp khúc tần suất
d) Biểu đồ tần số
- Đường gấp khúc tần số
e) Xét bảng phân bố ở câu a)
- Số trung bình cộng:
Từ đó ta thấy nhóm cá thứ 2 có khối lượng đồng đều hơn.
a), b) Số trung bình cộng của nhóm cá thứ nhất:
.(4x0,7 + 6x0,9 + 6x1.1 + 4x1,3) = 1
Phương sai: .(4x0,72 + 6x0,92 + 6x1,12 + 4x1,32) – 1 = 0,042
Độ lệch chuẩn: Sx = 0,2
Đối với nhóm cá thứ hai:
Số trung bình: .(3x0,6 + 4x0,8 + 6x1 + 4x1,2 + 3x1,4) = 1
Phương sai: .(3x0,62 + 4x0,82 + 6x12 + 4x1,22 + 3x1,42) – 1 = 0,064
Độ lệch chuẩn: Sx = ≈ 0,25.
c) Ta thấy = 1, trọng lượng trung bình hai nhóm cá bằng nhau nhưng < chứng tỏ mức độ phân tán các giá trị so với giá trị trung bình của nhóm cá thứ hai lớn hơn. Nghĩa là khối lượng nhóm cá thứ nhất đồng đều hơn nhóm cá thứ hai.
a), b) Số trung bình cộng của nhóm cá thứ nhất:
.(4x0,7 + 6x0,9 + 6x1.1 + 4x1,3) = 1
Phương sai: .(4x0,72 + 6x0,92 + 6x1,12 + 4x1,32) – 1 = 0,042
Độ lệch chuẩn: Sx = 0,2
Đối với nhóm cá thứ hai:
Số trung bình: .(3x0,6 + 4x0,8 + 6x1 + 4x1,2 + 3x1,4) = 1
Phương sai: .(3x0,62 + 4x0,82 + 6x12 + 4x1,22 + 3x1,42) – 1 = 0,064
Độ lệch chuẩn: Sx = ≈ 0,25.
c) Ta thấy = 1, trọng lượng trung bình hai nhóm cá bằng nhau nhưng < chứng tỏ mức độ phân tán các giá trị so với giá trị trung bình của nhóm cá thứ hai lớn hơn. Nghĩa là khối lượng nhóm cá thứ nhất đồng đều hơn nhóm cá thứ hai.
Chọn A.
Do kích thước mẫu N = 100 là một số chẵn nên số trung vị là trung bình cộng của 2 giá trị đứng thứ
do đó
a) Số trung bình của nhóm cá mè thứ nhất:
Số trung bình của nhóm cá mè thứ hai:
b) Phương sai của bảng phân bố khối lượng của nhóm cá mè thứ 1:
Phương sai của bảng phân bố khối lượng của nhóm cá mè thứ 2:
c) Nhận xét: s12 < s22 nên nhóm cá thứ nhất có khối lượng đồng đều hơn.
a) Số trung bình điểm thi Ngữ văn của lớp 10C và 10D tương ứng là
.(3x5 + 7x6 + 12x7 + 14x8 + 3x9 + 1x10) = 7,25
.(8x6+18x7+10x8+4x9) = 7,25.
Phương sai bảng điểm thi Văn của hai lớp theo thứ tự là:
= 1,2875 = 0,7875.
Độ lệch chuẩn theo thứ tự là Sx ≈ 1,1347 Sy ≈ 0,8874.
b) Qua xem xét các số đặc trung ta thấy điểm trung bình thi văn 2 lớp 10C và 10D là như nhau (đều bằng 7,25). Nhưng phương sai của bảng điểm thi lớp 10D nhỏ hơn phương sai tương ứng ở lớp 10C. Điều đó chứng tỏ kết quả làm bài thi Văn ở lớp 10D đồng đều hơn.