K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).

2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày

\(\Rightarrow15\times y+15\times y=1\left(1\right)\)

Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)

\(\Rightarrow3\times x+5\times y=\frac{1}{4}\)

\(\Rightarrow5\times\left(3\times x+5\times y\right)=5\times\frac{1}{4}\)

\(15\times x+25\times y=\frac{5}{4}\left(2\right)\)

Lấy (2) trừ đi (1) ta được:

\(\left(15\times x+25\times y\right)-\left(15\times x+15\times y\right)=\frac{5}{4}-1\)

\(10\times y=\frac{1}{4}\)

\(y=\frac{1}{4}:10\)

\(\Rightarrow y=\frac{1}{40}\)

\(\Rightarrow x=\frac{1}{24}\)

Vậy .................

Chúc bạn học tốt

17 tháng 5 2022

TK:
1.

Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).

2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày


15
×
y
+
15
×
y
=
1
(
1
)

Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)


3
×
x
+
5
×
y
=
1
4


5
×
(
3
×
x
+
5
×
y
)
=
5
×
1
4

15
×
x
+
25
×
y
=
5
4
(
2
)

Lấy (2) trừ đi (1) ta được:

(
15
×
x
+
25
×
y
)

(
15
×
x
+
15
×
y
)
=
5
4

1

10
×
y
=
1
4

y
=
1
4
:
10


y
=
1
40


x
=
1
24

Vậy .................

17 tháng 5 2022

Tham Khảo:
1.

Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).

2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày

⇒15×y+15×y=1(1)⇒15×y+15×y=1(1)

Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)

⇒3×x+5×y=14⇒3×x+5×y=14

⇒5×(3×x+5×y)=5×14⇒5×(3×x+5×y)=5×14

15×x+25×y=54(2)15×x+25×y=54(2)

Lấy (2) trừ đi (1) ta được:

(15×x+25×y)−(15×x+15×y)=54−1(15×x+25×y)−(15×x+15×y)=54−1

10×y=1410×y=14

y=14:10y=14:10

⇒y=140⇒y=140

⇒x=124⇒x=124

Vậy .................

18 tháng 3 2022

Thiếu đổi hệ pt hay sao ý

23 tháng 12 2018

Gọi thời gian đội 1 và đội 2 hoàn thành công việc một mình lần lượt là x(ngày), y( ngày)(x,y>12)

Mỗi ngày đội 1 làm được phẫn việc là 1/x

Đội 2 làm được số phần việc là 1/y

cả hai đội làm được số phần việc là 1/12

ta có phương trình: 1/x+1/y=1/12(1)

Đội 1 làm trong 5 ngày rồi nghỉ, dội 2 làm tiếp 15 ngày thì họ làm được 75%công việc

từ đó ta có phương trình: 5/x+15/y=3/4(2)

Từ (1)(2) ta có hệ phương trình:{1/x+1/y=1/12; 5/x+15/y=3/4

Giải hệ pt ta tìm được x=20; y=30

KL:Nếu làm một mình thì đội thứ nhất hoàn thành công việc trong 20 ngày, đội thứ hai hoàn thành công việc trong 30 ngày.

Gọi x là thời gian người thứ nhất hoàn thành x (ngày) 
Gọi y là thời gian  người thứ  hai hoàn thành y (ngày ) 
điều kiện ( x,y >o)
Trong 1  ngàyngười thứ 1   làm được \(\dfrac{1}{x}\)công việc
Trong 1  ngày  người thứ 2  làm được \(\dfrac{1}{y}\)công việc 
Vì 2 người cùng làm chung 1  công việc thì 20 ngày thì xong nên ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\)

Nếu người thứ nhất làm 12 ngày  và  người thứ  hai làm trong 15 ngày  chỉ được công việc 

=))\(\dfrac{12}{x}\)+\(\dfrac{15}{y}\)=\(\dfrac{2}{3}\)(2)
Từ (1) và (2)  Ta có hpt :

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\\\dfrac{12}{x}+\dfrac{15}{y}=\dfrac{2}{3}\end{matrix}\right.\) Đặt  \(\dfrac{1}{x}\)là u; \(\dfrac{1}{y}\)là v 
Ta có 
\(\left\{{}\begin{matrix}u+v=\dfrac{1}{20}\\12u+15v=\dfrac{2}{3}\end{matrix}\right.\left(=\right)\left\{{}\begin{matrix}12u+12v=\dfrac{3}{5}\left(x12\right)\\12u+15v=\dfrac{2}{3}\end{matrix}\right.\left(=\right)-3v=-\dfrac{1}{15}\left(=\right)v=\dfrac{1}{45 }\)

Thay v=\(\dfrac{1}{45}\) vào pt \(12u+15v=\dfrac{2}{3}\left(=\right)12u+15\left(\dfrac{1}{45}\right)=\dfrac{2}{3}.....\left(=\right)12u+\dfrac{1}{3}=\dfrac{2}{3}\left(=\right)12u=\dfrac{2}{3}-\dfrac{1}{3}\left(=\right)12u=\dfrac{1}{3}\left(=\right)u=\dfrac{1}{36}\)
\(\dfrac{1}{x}=\dfrac{1}{36}->x=36;\dfrac{1}{y}=\dfrac{1}{45}->y=45\)
Vậy Khi làm riêng đội 1  hoàn thành    trong 36 ngày , đội thứ 2 hoàn thành trong 45 ngày

 

 

2 tháng 7 2021

- Gọi thời gian mỗi đội hoàn thành công việc là x; y ( ngày ; x,y > 8 )

- Một ngày đội 1 làm được số phần công việc là : \(\dfrac{1}{x}\) ( phần )

- Một ngày đội 2 làm được số phần công việc là : \(\dfrac{1}{y}\) ( phần )

=> Một ngày hai đội làm được số phần công việc là : \(\dfrac{1}{x}+\dfrac{1}{y}\) ( phần )

Mà nếu làm chung 8 ngày sẽ xong công việc .

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\left(I\right)\)

- Lại có nếu làm riêng đội 1 nhanh hơn đội 2 12 ngày .

\(\Rightarrow-x+y=12\left(II\right)\)

- Từ 1 và 2 ta được hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\-x+y=12\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=24\\x=12\end{matrix}\right.\) ( TM )

Vậy ...

2 tháng 7 2021

Gọi số ngày hoàn thành công việc riêng của đội 1 là a (a>0) (ngày)

=> Số ngày hoàn thành công việc riêng của đội 2 là a + 12  (ngày)

Số công việc mỗi ngày của đội 1: \(\dfrac{1}{a}\) (công việc)

Số công việc mỗi ngày của đội 2: \(\dfrac{1}{a+12}\) (công việc)

Theo bài ta có

\(8.\left(\dfrac{1}{a}+\dfrac{1}{a+12}\right)=1\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{a+12}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{a+12}{a\left(a+12\right)}+\dfrac{a}{a\left(a+12\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{2a+12}{a^2+12a}=\dfrac{1}{8}\)

\(\Leftrightarrow16a+96=a^2+12a\)

\(\Leftrightarrow a^2-4a-96=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=12\\a=-8\left(loại\right)\end{matrix}\right.\)

Vậy số ngày hoàn thành công việc riêng của đội 1 là 12 ngày, đội 2 là 24 ngày

20 tháng 1 2022

Gọi \(x\left(giờ\right),y\left(giờ\right)\) lần lượt là thời gian của đội thứ nhất và đội thứ hai làm riêng xong công việc (x, y > 0)

Trong một giờ hai đội làm được: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\) (công việc)

Đội thứ nhất làm trong 3 giờ rồi đội thứ hai làm tiếp trong 4 giờ được 0,8 công việc nên ta có:

\(\dfrac{3}{x}+\dfrac{4}{y}=0,8\)

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{3}{x}+\dfrac{4}{y}=0,8\end{matrix}\right.\)

Đặt \(u=\dfrac{1}{x};v=\dfrac{1}{y}\), ta có:

\(\left\{{}\begin{matrix}u+v=\dfrac{1}{4}\\3u+4v=0,8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4u+4v=1\\3u+4v=0,8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4u+4v=1\\u=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4.\dfrac{1}{5}+4v=1\\u=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\dfrac{1}{20}\\u=\dfrac{1}{5}\end{matrix}\right.\)

*) \(u=\dfrac{1}{5}\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{5}\Leftrightarrow x=5\) (nhận)

*) \(v=\dfrac{1}{20}\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{20}\Rightarrow y=20\) (nhận)

Vậy đội thứ nhất làm riêng trong 5 giờ xong công việc

đội thứ hai làm riêng trong 20 giờ xong công việc

9 tháng 1 2017

Gọi x (ngày) là thời gian đội thứ nhất làm riêng xong nửa công việc.

Điều kiện: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 ⇒ 6 < x < 25

Khi đó thời gian làm riêng xong nửa công việc của đội thứ hai là: 25 – x (ngày)

trong 1 ngày, đội thứ nhất làm được 1/2x (công việc)

trong 1 ngày, đội thứ hai làm được 1/[2.(25 - x)] (công việc)

trong 1 ngày, cả hai đội làm được 1/12 (công việc)

Theo đề bài, ta có phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Cả hai giá trị của x đều thỏa mãn điều kiện bài toán

Vậy đội thứ nhất làm riêng xong công việc trong 15.2 = 30 ngày

đội thứ hai làm riêng xong công việc trong 20 ngày

hoặc đội thứ nhất làm riêng xong công việc trong 10.2 = 20 ngày

đội thứ hai làm riêng xong công việc trong 30 ngày.