Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: C
Để cường độ điện trường tại M bằng 0 thì hai vecto E 1 do q1 gây ra và E 2 do q2 gây ra phải ngược chiều và cùng độ lớn nên M nằm trên đường thẳng AB và ngoài đoạn AB
Do |q2| > |q1| nên r1 < r2 => r1 = r2 - AB,
=>
Chọn đáp án B
Hai điện tích q 1 , q 2 trái dấu nên điểm có cường độ điện trường tổng hợp bằng 0 phải nằm ngoài đoạn thẳng AB và do q 1 , q 2 nên điểm này phải nằm về phía B.
Ta biểu diễn cường độ điện trường tại C như trên hình.
a) Véc tơ lực tác dụng của điện tích q 1 l ê n q 2 có phương chiều như hình vẽ:
Có độ lớn: F 12 = k . | q 1 . q 2 | A B 2 = 9.10 9 .16.10 − 6 .4.10 − 6 0 , 3 2 = 6 , 4 ( N ) .
b) Các điện tích q 1 v à q 2 gây ra tại C các véc tơ cường độ điện trường E 1 → và E 2 → có phương chiều như hình vẽ:
Có độ lớn: E 1 = k | q 1 | A C 2 = 9.10 9 .16.10 − 6 0 , 4 2 = 9 . 10 5 ( V / m ) ;
E 2 = k | q 2 | B C 2 = 9.10 9 .4.10 − 6 0 , 1 2 = 36 . 10 5 ( V / m ) ;
Cường độ điện trường tổng hợp tại C là:
E → = E 1 → + E 2 → có phương chiều như hình vẽ, có độ lớn:
E = E 1 + E 2 = 9 . 10 5 + 36 . 10 5 - 45 . 10 5 ( V / m ) .
c) Gọi E 1 → và E 2 → là cường độ điện trường do q 1 v à q 2 gây ra tại M thì cường độ điện trường tổng hợp do q 1 v à q 2 gây ra tại M là: E → = E 1 → + E 2 → = 0 → ð E 1 → = - E 2 → ð E 1 → và E 2 → phải cùng phương, ngược chiều và bằng nhau về độ lớn. Để thỏa mãn các điều kiện đó thì M phải nằm trên đường thẳng nối A, B; nằm trong đoạn thẳng AB (như hình vẽ).
Với E 1 ' = E 2 ' ⇒ 9 . 10 9 . | q 1 | A M 2 = 9 . 10 9 . | q 2 | ( A B − A M ) 2
⇒ A M A B − A M = | q 1 | | q 2 | = 2 ⇒ A M = 2. A B 3 = 2.30 3 = 20 ( c m ) .
Vậy M nằm cách A 20 cm và cách B 10 cm.
Để lực tổng hợp tác dụng lên điện tích bằng q0=0 thì \(\overrightarrow{F_{10}}+\overrightarrow{F_{20}}=\overrightarrow{0}\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{F_{10}}\uparrow\downarrow\overrightarrow{F_{20}}\\F_{10}=F_{20}\end{matrix}\right.\)
Ta có \(MB-MA=r_1-r_2=10\) (1)
Mà \(F_{10}=F_{20}\Rightarrow k\cdot\dfrac{\left|q_1q_0\right|}{r^2_1}=k\cdot\dfrac{\left|q_2q_0\right|}{r^2_2}\)\(\Rightarrow\dfrac{r_1}{r_2}=2\) (2)
Từ 1 và 2 \(\Rightarrow\left\{{}\begin{matrix}r_1=20cm\\r_2=10cm\end{matrix}\right.\)
\(\Rightarrow\) M cách A 10cm và cách B 20cm
Để điểm M có cường độ điện trường tổng hợp bằng 0 thì \(\overrightarrow{E_1}\) do \(q_1\) gây ra và \(\overrightarrow{E_2}\) do \(q_2\) gây ra phải ngược chiều và cùng độ lớn nên M nằm trên đường thẳng AB và ngoài đoạn AB
Ta có : \(\left|q_2\right|>\left|q_1\right|\left(9\mu C>4\mu C\right)\)
\(\rightarrow r_2>r_1\)\(\rightarrow r_1=r_2-AB\)
\(\Leftrightarrow\dfrac{\left|q_1\right|}{r_1^2}=\dfrac{\left|q_2\right|}{r_2^2}\)
\(\Leftrightarrow\dfrac{4}{r_1^2}=\dfrac{9}{r_2^2}\)\(\Leftrightarrow\dfrac{4}{\left(r_2-AB\right)^2}=\dfrac{9}{r_2^2}\)
\(\Leftrightarrow\dfrac{4}{\left(r_2-9\right)^2}=\dfrac{9}{r_2^2}\)
\(\Leftrightarrow r_2=27cm\)