Hai điểm sáng 1 và 2 cùng dao động điều hòa trên trục Ox với phương trình dao động là:...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Đáp án B

Vị trí của 2 vật tại các thời điểm:

+ Tại thời điểm ban đầu:  A 2 cos φ   -   A 1 cos φ   =   a 3 ( 1 )

+ Sau  ∆ t   : (2 dao động biểu diễn bằng 2 vectơ quay): Vật 1 quay góc ∆ φ 1 , vật 2 quay góc  ∆ φ 2  (vì vật 1, sau 2 ∆ t  là góc 2 ∆ φ 1  thì nó trở lại vị trí cũ x 0  lần đầu nên sau  (góc quay ) nó phải ở -A1 như hình vẽ. Vật 2 chuyển động chậm hơn, và vuông pha với vật 1 nên ở vị trí như hình vẽ). Khoảng cách 2 vật lúc này là:  A1 = 2a (2)

+ Sau  2 ∆ t , vật 1 quay thêm góc  ∆ φ 2   nữa, vật 2 quay góc  nữa. Chúng biểu diễn bằng các vectơ. Khoảng cách của chúng: 

A 2 cos φ   +   A 1 cos φ   =   3 a 3

+ Theo hình vẽ: 

11 tháng 4 2017

Áp dụng công thức (5.1 và 5.2 - SGK) ta tìm được:

A = 2,3 cm và φ = 0,73π

Phương trình dao động tổng hợp là: x = 2,3cos(5πt + 0,73π) (cm).


15 tháng 6 2016

undefined

15 tháng 6 2016

chọnHỏi đáp Vật lý D

15 tháng 6 2016

Hỏi đáp Vật lý

28 tháng 8 2015

Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)

+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.

+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)

+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)

Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)

 

30 tháng 9 2015

Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)

+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)

+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)

19 tháng 5 2018

tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???

2 tháng 10 2015

Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)

t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)