K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc...
Đọc tiếp

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.

Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.

Bài 3: Cho  ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b)  DBC =  BDE

Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.

Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD  BC

Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a)  ABM =  DCM. b) AB // DC. c) AM  BC

Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.

Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.

Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.

11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN

2
18 tháng 3 2020
làm đc câu nào thì làm
20 tháng 8 2021

tự nghĩ đi

18 tháng 4 2016

Vì L và M đối xứng qua đường thẳng xy. Nên đường thẳng xy là trung trực của ML

I ∈ xt => IM = IL

Nên IM + IN = IL + IN

+ Nếu I là giao điểm của NL và xy thì IL + IN = LN

+ Nếu I không là giao điểm của NL và xy thì ba điểm I, N, L không thẳng hàng

=> IL + IN > LN

Vậy với mọi vị trí của I trên xy thì IL + IN ≥ LN

5 tháng 8 2017

Vì L và M đối xứng qua đường thẳng xy. Nên đường thẳng xy là trung trực của ML

I ∈ xt => IM = IL

Nên IM + IN = IL + IN

+ Nếu I là giao điểm của NL và xy thì IL + IN = LN

+ Nếu I không là giao điểm của NL và xy thì ba điểm I, N, L không thẳng hàng

=> IL + IN > LN

Vậy với mọi vị trí của I trên xy thì IL + IN ≥ LN

19 tháng 4 2017

ướng dẫn:

Vì L và M đối xứng qua đường thẳng xy. Nên đường thẳng xy là trung trực của ML

I ∈ xt => IM = IL

Nên IM + IN = IL + IN

+ Nếu I là giao điểm của NL và xy thì IL + IN = LN

+ Nếu I không là giao điểm của NL và xy thì ba điểm I, N, L không thẳng hàng

=> IL + IN > LN

Vậy với mọi vị trí của I trên xy thì IL + IN ≥ LN

19 tháng 4 2017

48. Hai điểm M và N cùng nằm trên một nửa mặt phẳng có bờ là đường thẳng xy.
Lấy điểm L đối xứng với M qua xy. Gọi I là một điểm của xy. Hãy so sánh IM + IN với LN.

Hướng dẫn:

Vì L và M đối xứng qua đường thẳng xy. Nên đường thẳng xy là trung trực của ML

I ∈ xt => IM = IL

Nên IM + IN = IL + IN

+ Nếu I là giao điểm của NL và xy thì IL + IN = LN

+ Nếu I không là giao điểm của NL và xy thì ba điểm I, N, L không thẳng hàng

=> IL + IN > LN

Vậy với mọi vị trí của I trên xy thì IL + IN ≥ LN

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0
9 tháng 10 2017

Vì L và M đối xứng qua đường thẳng xy nên xy là đường thẳng đi qua trung điểm và vuông góc với ML.

Nên đường thẳng xy là trung trực của ML.

I ∈ xy ⇒ IM = IL (theo định lý 1).

Nên IM + IN = IL + IN

- TH1: Nếu I, L, N thẳng hàng

⇒ IL + IN = LN (vì N và L nằm khác phía so với đường thẳng xy và I nằm trên xy).

⇒ IM + IN = LN

Giải bài 48 trang 77 SGK Toán 7 Tập 2 | Giải toán lớp 7

- TH2: Nếu I không là giao điểm của LN và xy thì ba điểm I, L, N không thẳng hàng

Áp dụng bất đẳng thức tam giác vào Δ INL ta được: IL + IN > LN

mà IM = IL (cmt)

⇒ IL + IN > LN (bất đẳng thức tam giác)

⇒ IM + IN > LN

Giải bài 48 trang 77 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vậy với mọi vị trí của I trên xy thì IM + IN ≥ LN