Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi t1 là thời gian dự định,
AC là quãng đường người đó đi được trong 1/4 thời gian dự định
Ta có: 3 giờ 20 phút=10/3 giờ
Quãng đường AB=v.t1=10v/3 (1)
Quãng đường AC= \(\frac{10v}{3.4}=\frac{5v}{6}\)(2)
Quãng đường BC= (\(\frac{10}{3}-\frac{5}{6}-\frac{1}{4}\)).(v+4)= \(\frac{9v+36}{4}\)(3)
Từ (1), (2), (3) ta được: \(\frac{5v}{6}+\frac{9v+36}{4}=\frac{10v}{3}\)→v=36km/h
a) Gọi độ dài quãng đường AB là S
=> Dự định = 4v
Nhưng trên thực tế: Nửa quãng đường đầu S = v.t1 , nửa quãng đường sau S = (v + 3) . t2
t1 + t2 = 4 - 1/3 = 11/3
Mà t1 = t2 = 2 (vì thời gian này bằng nửa thời gian dự định, đi nửa quãng đường đầu với vận tốc không đổi nên thời gian là một nửa)
=> t2 = 5/3
=> 4v = 2v + (v + 3). 5/3 => v = 15 (km/giờ) => S = 60 km
b)Đi 1h, s1 = 15km
Thời gian còn lại là
4giờ -1 giờ -0,5 giờ = 2,5 (giờ)
=> Quãng đường còn lại 45km
=> Vận tốc là :
45 : 2,5 = 18 (km/giờ)
ta có:
t=\(\frac{S}{v}\)
t'=\(\frac{S}{2v}+\frac{S}{2\left(v+3\right)}\)
do người đó đến sớm hơn dự định 20 phút nên:
t-t'=\(\frac{1}{3}\)
\(\Leftrightarrow\frac{S}{v}-\frac{S}{2v}-\frac{S}{2\left(v+3\right)}=\frac{1}{3}\)
\(\Leftrightarrow S\left(\frac{1}{v}-\frac{1}{2v}-\frac{1}{2\left(v+3\right)}\right)=\frac{1}{3}\)
\(\Leftrightarrow S\left(\frac{2v+6-\left(v+3\right)-v}{2v\left(v+3\right)}\right)=\frac{1}{3}\)
\(\Leftrightarrow S\left(\frac{3}{2v\left(v+3\right)}\right)=\frac{1}{3}\)
\(\Rightarrow S=\frac{2v^2+6v}{9}\left(1\right)\)
ta lại có:
\(t=\frac{S}{v}\Leftrightarrow\frac{S}{v}=4\Leftrightarrow S=4v\left(2\right)\)
thế (2) vào (1) ta có:
\(4v=\frac{2v^2+6v}{9}\)
\(\Leftrightarrow2v^2+6v=36v\)
\(\Rightarrow2v^2-30v=0\)
giải phương trình ta có:
v=15km hoặc v=0km(loại)
vậy S=60km
b)sau 1h người đó đi được:
v*1=15km
đoạn đường người đó còn phải đi là:
60-15=45km
do người đó nghỉ 30 phút nên người đó phải đi đoạn còn lại trong:
4-1-0.5=2.5h
vận tốc người đó phải đi lúc sau là:
45/2.5=18km/h
10m/s=36km/h
ta có:
do cả hai lần cùng đi một quãng đường nên:
S=S1
\(\Leftrightarrow vt=v_1t_1\)
\(\Leftrightarrow36t=40t_1\)
mà t=t1+0,5
\(\Rightarrow36\left(t_1+0,5\right)=40t_1\)
\(\Rightarrow t_1=4,5h\)
\(\Rightarrow S=180km\)
Giải:
a) Thời gian đi hết quãng đường trên là: \(t_1+t_2=t\left(1\right)\)
Mà ta có: \(t_1=\dfrac{S_{AB}}{2v};t_2=\dfrac{S_{AB}}{2\left(v+3\right)};t=4-\dfrac{1}{3}=\dfrac{11}{3}\)
Thay vào \(\left(1\right)\) ta được: \(\dfrac{S_{AB}}{2v}+\dfrac{S_{AB}}{2\left(v+3\right)}=\dfrac{11}{3}\left(2\right)\)
Mặt khác \(S_{AB}=v.t=4v\)
Thay vào \(\left(2\right)\) ta được: \(\dfrac{4v}{2v}+\dfrac{4v}{2\left(v+3\right)}=\dfrac{11}{3}\)
\(\Rightarrow2+\dfrac{2v}{v+3}=\dfrac{11}{3}\Rightarrow12v+18=11v+33\)
\(\Rightarrow v=\) \(15(km/h)\)
Quãng đường \(AB\) dài là:
\(S_{AB}=4v=4.15=60km\)
b) Quãng đường người đó đi được sau 1h là:
\(S'_1=v.t'=15\left(km\right)\)
Để đến đúng giờ, thời gian còn lại và quãng đường còn lại người đó phải đi lần lượt là:
\(t'_2=2,5\left(h\right);S'_2=60-15=45\left(km\right)\)
Vậy người đó phải đi với vận tốc là:
\(v=\dfrac{S'_2}{t'_2}=\dfrac{45}{2,5}=18\) \((km/h)\)
Đổi 2 giờ 10 phút = 2\(\frac{1}{6}\) giờ
Vì la chuyển động thẳng đều theo dự định nên đi \(\frac{1}{2}\) quãng đường sẽ hết 2 giờ
Nhưng sau đó tăng tốc lên 3km/giờ thì \(\frac{1}{2}\) quãng đường hết
2\(\frac{1}{6}\)(2 - \(\frac{1}{3}\))
Ta có phương trình:
Vận tốc dự định*2=(V dự định+3)*(2 - \(\frac{1}{3}\))(do chúng đều = S/2)
=> Vận tốc dự định =15km/h
=> Quãng đường = 60km
b)Người đó đi với vận tốc 15km/h.
<=> Đi 1h được 15 km còn
60 -15 = 45 (km)
Nếu dự định là 4h thi thời gian con lại là:
\(4-1\frac{1}{2}=\frac{5}{2}=2,5\) (giờ)
=> vân tôc là 45 : 2.5=18 (km/giờ)
a)Thời gian đi cả quãng đường là t.
\(15phút=\dfrac{1}{4}h\)
Ban đầu: \(S_1=\dfrac{1}{4}S=\dfrac{1}{4}v\cdot t=\dfrac{t}{4}\cdot v\)
Thời gian còn lại là \(t-\dfrac{t}{4}=\dfrac{3t}{4}\)
Sau khi tăng V thêm 3km/h thì \(S_2=\left(v+3\right)\cdot\left(\dfrac{3}{4}t-\dfrac{1}{4}\right)\)
Mà \(S=S_1+S_2=\dfrac{t}{4}\cdot v+\left(v+3\right)\cdot\left(\dfrac{3}{4}t-\dfrac{1}{4}\right)=v\cdot t\)
Thay \(t=4\) ta đc:
\(\Rightarrow v=33\)km/h
b)\(S=v\cdot t=33\cdot4=132km\)
Quãng đường di đc 1h: \(S_1=33\cdot1=33km\)
Quãng đường còn lại phải đi:
\(S_2=S-S_1=132-33=99km\)
Thời gian còn lại để đi đúng dự định:
\(t'=t-t_1-t_{nghỉ}=4-1-\dfrac{48}{60}=2,2h\)
Vận tốc cần để đi đến nơi kịp thời gian dự định:
\(v'=\dfrac{S_2}{t'}=\dfrac{99}{2,2}=45\)km/h
a) Thời gian đi hết quãng đường trên là: t1+t2=t(1)t1+t2=t(1)
Mà ta có: t1=SAB2v;t2=SAB2(v+3);t=4−13=113t1=SAB2v;t2=SAB2(v+3);t=4−13=113
Thay vào (1)(1) ta được: SAB2v+SAB2(v+3)=113(2)SAB2v+SAB2(v+3)=113(2)
Mặt khác SAB=v.t=4vSAB=v.t=4v
Thay vào (2)(2) ta được: 4v2v+4v2(v+3)=1134v2v+4v2(v+3)=113
⇒2+2vv+3=113⇒12v+18=11v+33⇒2+2vv+3=113⇒12v+18=11v+33
⇒v=⇒v= 15(km/h)15(km/h)
Quãng đường ABAB dài là:
SAB=4v=4.15=60kmSAB=4v=4.15=60km
b) Quãng đường người đó đi được sau 1h là:
S′1=v.t′=15(km)S1′=v.t′=15(km)
Để đến đúng giờ, thời gian còn lại và quãng đường còn lại người đó phải đi lần lượt là:
t′2=2,5(h);S′2=60−15=45(km)t2′=2,5(h);S2′=60−15=45(km)
Vậy người đó phải đi với vận tốc là:
v=S′2t′2=452,5=18v=S2′t2′=452,5=18 (km/h)
Gọi chiều dài quáng đường là s(km)
Thời gian xe thứ nhất đi hết quãng đường là:
\(t_1=\dfrac{s}{30}\left(giờ\right)\)
Thời gian xe thứ 2 đi hết quãng đường là:
\(t_2=\dfrac{\dfrac{s}{3}}{30}+\dfrac{\dfrac{2s}{3}}{40}\left(giờ\right)\)
Xe thứ 2 đến sớm hơn xe thứ nhất 5('\(5'=\dfrac{1}{12}\left(giờ\right)\)) nên:
\(t_1-t_2=\dfrac{s}{30}-\left(\dfrac{\dfrac{s}{3}}{30}+\dfrac{\dfrac{2s}{3}}{40}\right)=\dfrac{1}{12}\Rightarrow s=15km\)
Thời gian xe thứ nhất đi hết quãng đường AB là:
\(t_1=\dfrac{s}{30}\left(giờ\right)=\dfrac{1}{2}\left(giờ\right)=30'\)
Thời gian xe thứ hai đi hết quãng đường AB là:
\(t_2=25'\)
Còn phần tìm độ lớn v2 mik chưa học nên thôi nhá
a.Sau khi tăng tốc thêm 3 km/h thì đến nơi sớm hơn dự kiến là 1h ,mà S là như nhau nên theo bài ra ta có:
V1.t = (V1 +3 ).(t -1).
12.t = (12+3 ).(t -1).
12.t = 15.t -15.
15 = 15.t – 12.t.
5 = t.
b. Gọi t’1 là thời gian đi quãng đường s1: t’1 = S1/V1 ( / : là chia).
Thời gian sửa xe : t = 15 phút = ¼ h.
Thời gian đi quãng đường còn lại : t’2 = (S1-S2)/V2.
Theo bài ra ta có : t1 – (t’1 + ¼ + t’2) = 30 ph = ½ h.
T1 – S1/V1 – ¼ - (S-S1)/V2 = ½. (1).
S/V1 – S/V2 – S1.(1/V1- 1/V2) = ½ +1 /4 =3/4 (2).
Từ (1) và (2) suy ra: S1.(1/V1 – 1/V2) = 1- ¾ = ¼.
Hay S1 = ¼ . (V1- V2)/(V2-V1) = ¼ . (12.15)/(15-12) = 15 km.
Bạn tự tóm tắt đề nhé .
\(a.\) Đổi : \(30'=\dfrac{1}{2}\left(h\right)\)
Thời gian Hải đi \(\dfrac{1}{3}\) quãng đường đầu là :
\(t_1=\dfrac{t}{3}=\dfrac{3}{3}=1\left(h\right)\)
Thời gian đi quãng đường còn lại là :
\(t_2=t-t_1-\dfrac{1}{2}=3-1-\dfrac{1}{2}=1,5\left(h\right)\)
Ta có : \(S=S_1+S_2\)
⇔ \(v_1.t=v_1.t_1+v_2.t_2\)
⇔ \(2v_1=1,5.\left(v_1+4\right)\)
⇔ \(0,5v_1=6\)
⇔ \(v_1=12\) ( km/h )
Quãng đường AB dài là : \(12.1+16.1,5=36\left(km\right)\)
b. Đổi : \(20'=\dfrac{1}{3}\left(h\right)\)
Quãng đường còn lại mà Hải phải đi là :
\(S'=36-12=24\left(km\right)\)
Thời gian Hải phải đi theo dự tính trên quãng S' là :
\(t'=3-\left(1+\dfrac{1}{3}\right)=\dfrac{5}{3}\left(h\right)\)
Vận tốc Hải phải đi để đến B theo dự tính là :
\(v'=\dfrac{24}{\dfrac{5}{3}}=14,4\) ( km / h)
KL..............