K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình bình bình ABCD có AB = CD = 8( cm ) và AD = BC = 6( cm )

Từ A kẻ các đường cao AH,AK.

Khi đó ta có:

Mà một hình bình hành thì chỉ có một diện tích chung nên 8.AH = 6.AK

Nếu độ dài đường cao thứ nhất là AH = 5( cm ) thì:

8.5 = 6.AK ⇔ AK = (8.5)/6 = 20/3( cm ) là độ dài đường cao thứ hai.

Nếu độ dài đường cao thứ nhất là AK = 5( cm ) thì:

8.AH = 6.5 ⇔ AH = (6.5)/8 = 15/4( cm ) là độ dài đường cao thứ hai.

Vậy bài toán này có hai đáp số 

30 tháng 5 2018

Bài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình bình bình ABCD có AB = CD = 8( cm ) và AD = BC = 6( cm )

Từ A kẻ các đường cao AH,AK.

Khi đó ta có:

Mà một hình bình hành thì chỉ có một diện tích chung nên 8.AH = 6.AK

Nếu độ dài đường cao thứ nhất là AH = 5( cm ) thì:

8.5 = 6.AK ⇔ AK = (8.5)/6 = 20/3( cm ) là độ dài đường cao thứ hai.

Nếu độ dài đường cao thứ nhất là AK = 5( cm ) thì:

8.AH = 6.5 ⇔ AH = (6.5)/8 = 15/4( cm ) là độ dài đường cao thứ hai.

Vậy bài toán này có hai đáp số

17 tháng 5 2017

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình bình bình ABCD có AB = CD = 8( cm ) và AD = BC = 6( cm )

Từ A kẻ các đường cao AH,AK.

Khi đó ta có:

Mà một hình bình hành thì chỉ có một diện tích chung nên 8.AH = 6.AK

Nếu độ dài đường cao thứ nhất là AH = 5( cm ) thì:

8.5 = 6.AK ⇔ AK = (8.5)/6 = 20/3( cm ) là độ dài đường cao thứ hai.

Nếu độ dài đường cao thứ nhất là AK = 5( cm ) thì:

8.AH = 6.5 ⇔ AH = (6.5)/8 = 15/4( cm ) là độ dài đường cao thứ hai.

Vậy bài toán này có hai đáp số

16 tháng 9 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giả sử hình bình hành ABCD cói AB = 8cm, AD = 6cm.

Kẻ AH ⊥ CD, AK ⊥ BC.Ta có 5 < 6, 5 < 8

Đường cao là cạnh góc vuông nhỏ hơn cạnh huyền thỏa mãn có hai trường hợp:

*Trường hợp 1: AK = 5cm

Ta có: S A B C D  = AK.BC = 5.6 = 30 ( c m 2 )

S A B C D  = AH.AD = 8.AH

Suy ra: 8.AH = 30 ⇒ AH = 30/8 = 15/4 (cm)

*Trường hợp 2: AH = 5cm

Ta có:  S A B C D = AH.CD= 5.8 = 40 ( c m 2 )

S A B C D  = AK.BC = 6.AH

Suy ra: 6.AK = 40 ⇒ AK = 40/6 = 20/3 (cm)

Vậy đường cao thứ hai có độ dài là 15/4 cm hoặc 20/3 cm

Bài toán có hai đáp số.

GV
29 tháng 4 2017

Nếu a là độ dài cạnh và h là đường cao tương ứng, b là cạnh kia và k là đường cao tương ứng thì ta có: a.h = b.k (vì cùng bằng diện tích hình bình hành).

Đối với bài toán đã cho, ta có 2 trường hợp sau:

Trường hơp 1: đường cao đã cho (5cm) ứng với cạnh 6cm. Khi đó đường cao thứ hai là: \(\dfrac{5.6}{8}=\dfrac{15}{4}\left(cm\right)\)

Trường hợp 2: đường cao 5cm ứng với cạnh 8cm, khi đó đường cao thứ hai là: \(\dfrac{5.8}{6}=\dfrac{20}{3}\left(cm\right)\)

10 tháng 3 2017

Gọi x (cm) là độ dài đường cao thứ hai ứng với cạnh 8cm của hình bình hành (0 < x < 5)

Theo công thức tính diện tích hình bình hành ta có phương trình:

6.5 = 8.x ⇔ 8x =30 ⇔ x = 3,75 (tmđk)

Vậy độ dài đường cao thứ hai là 3,75cm

2 tháng 4 2017

Gọi đường cao còn lại là h.

Giải bài 45 trang 133 Toán 8 Tập 1 | Giải bài tập Toán 8

Theo quan hệ giữa đường xiên và hình chiếu thì ta có chiều cao của hình bình hành luôn nhỏ hơn cạnh không tương ứng với nó.

⇒ Đường cao có độ dài bằng 5cm ứng với cạnh 4cm

⇒ SABCD = 4.5 = 20

Mà SABCD = h.6

⇒ h.6 = 20 ⇒ h = 20 : 6 = 3,33 (cm).

22 tháng 4 2017

Cho hình bình hành ABCD. Gọi AH, AK lần lượt là đường cao kẻ từ A đến CD, BC.

Ta có: SABCD = AB.AH = AD.AK

SABCD = 6.AH = 4.AK

Một đường cao có độ dài 5 cm thì đó là AK vì AK < AB (5 < 6), không thể là AH vì AH < 4.

Vậy 6.AH=4.5=20 => AH = \(\dfrac{10}{3}\)(cm)

Câu 1:  a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm Câu 3: a) Cho D ABC ∽ D MNI. BiếtAˆA^= 800;NˆN^= 300. TínhCˆC^  b) Cho DABD DBDC, viết các cặp góc tương ứng...
Đọc tiếp

Câu 1:  

a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. 

b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm 

c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm 

Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm 

Câu 3: a) Cho D ABC ∽ D MNI. Biết

AˆA^

= 800;

NˆN^

= 300. Tính

CˆC^

 

 

b) Cho DABD DBDC, viết các cặp góc tương ứng bằng nhau của hai tam giác đã cho.   

Câu 4: Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Lấy N thuộc AC sao cho AN = 3cm. Chứng minh MN // BC. 

Câu 5: Cho tam giác ABC vuông tại A có AB = 12cm, AC = 15cm. Vẽ AM là tia phân giác của góc A (M thuộc BC). Biết BM = 8cm. Tính NC? 

Câu 6 : Cho có AB = 3cm, AC = 4,5cm, BC = 6cm. có DE= 12cm, EF=9cm, DF = 6cm. Chứng minh 

Câu 7: a) Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Biết MN // BC. Tính MN?  

b) Cho tam giác ABC có AB = 15cm, AC = 18cm. Trên AB lấy điểm M sao cho AM = 12cm, qua điểm M kẻ đoạn thẳng MN//BC. Tính độ dài đoạn thẳng AN? 

Câu 8:Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy điểm M sao cho AM = 4cm. Kẻ MN song song với BC (NAC). Tính AN? 

Câu 9 : H.thang ABCD(AB//CD) có AB = 6cm, CD = 24cm, BD = 12cm. Chứng minh: DABDDBDC. 

Câu 10 : Cho nhọn. Trên cạnh Ox, đặt các đoạn thẳng OA = 6cm, OB = 18cm. Trên cạnh Oy, đặt các đoạn thẳng OC = 9cm, OD = 12cm.Chứng minh hai tam giác OAD và OCB  đồng dạng. 

Câu 11: Cho có MN = 6cm; MP = 8cm;  

NP = 12cm. Hai tam giác ABC và MNP có đồng dạng không? Vì sao?  

Câu 12: Cho góc nhọn xAy, trên tia Ax đặt hai đoạn thẳng AM = 10cm và AB = 12cm. Trên tia Ay đặt hai đoạn thẳng AN = 8cm và AC = 15cm. BN cắt CM tại H 

Chứng minh đồng dạng với   

Chứng minh    

1

Câu 11:

Xét ΔABC và ΔMNP có

\(\dfrac{AB}{MN}=\dfrac{AC}{MP}=\dfrac{BC}{NP}\left(=\dfrac{1}{2}\right)\)

Do đó: ΔABC~ΔMNP

Câu 12:

a: Xét ΔAMC và ΔANB có

\(\dfrac{AM}{AN}=\dfrac{AC}{AB}\left(\dfrac{10}{8}=\dfrac{15}{12}\right)\)

\(\widehat{MAC}\) chung

Do đó: ΔAMC đồng dạng với ΔANB

b: Ta có: ΔAMC đồng dạng với ΔANB

=>\(\widehat{ACM}=\widehat{ABN}\)

Xét ΔHMB và ΔHNC có

\(\widehat{HBM}=\widehat{HCN}\)

\(\widehat{MHB}=\widehat{NHC}\)(hai góc đối đỉnh)

Do đó; ΔHMB đồng dạng với ΔHNC

=>\(\dfrac{HB}{HC}=\dfrac{BM}{CN}\)

=>\(HB\cdot CN=BM\cdot CH\)

Câu 10:

Xét ΔOAD và ΔOCB có

\(\dfrac{OA}{OC}=\dfrac{OD}{OB}\)

góc O chung

Do đó: ΔOAD~ΔOCB