Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
(1 + x)3 + (1 - x)3 - 6x(x + 1) = 6
<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6
<=> -6x + 2 = 6
<=> -6x = 6 - 2
<=> -6x = 4
<=> x = -4/6 = -2/3
Bài 3:
a) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 10x3 + 25x2 - 15x = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -3
b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0
<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0
<=> -x2 + 9 = 0
<=> -x2 = -9
<=> x2 = 9
<=> x = +-3
c) (x + 4)(5x + 9) - x2 + 16 = 0
<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0
<=> 4x2 + 29x + 52 = 0
<=> 4x2 + 13x + 16x + 52 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> 4x + 13 = 0 hoặc x + 4 = 0
<=> x = -13/4 hoặc x = -4
a.\(x^3-x=0 \)
\(x(x^2-1)=0\)
x=0 hay x2-1=0
x=0 hay x2=1
x=0 hay x=1
Vậy x=0 hay x=1
b.\(x^3+1=0\)
\(x(x^2+1)=0\)
\(x=0 hay x^2+1=0\)
\(x=0 hay x^2=-1\)(vô lí vì x2≥0)
Vậy x=0
c.\(x^2-4x=0\)
\(x(x-4)=0\)
x=0 hay x-4=0
x=0 hay x=4
Vậy x=0 hay x=4
d.\(x(x-1)-2(1-x)=0\)
\(x(x-1)+2(x-1)=0 \)
\((x-1)(x+2)=0\)
x-1=0 hay x+2=0
x=1 hay x=-2
Vậy x=1 hay x=-2
e.\(2x(x-2)-(2-x)^2=0\)
\(2x(x-2)+(x-2)^2=0\)
\((x-2)(2x+x-2)=0\)
\((x-2)(3x-2)=0\)
x-2=0 hay 3x-2=0
x=2 hay 3x=2
x=2 hay x=2/3
Vậy x=2 hay x=2/3
f.\(4x(x+1)=8(x+1)\)
\(4x(x+1)-8(x+1)=0\)
\(4(x+1)(x-2)=0\)
4(x+1)=0 hay x-2=0
x+1=0 hay x=2
x=-1 hay x=2
Vậy x=-1 hay x=2
g.\(5x(x-2)-x+2=0\)
\(5x(x-2)-(x-2)=0\)
\((x-2)(5x-1)=0\)
x-2=0 hay 5x-1=0
x=2 hay 5x=1
x=2 hay x=1/5
Vậy x=2 hay x=1/5
h.\((x+1)=(x+1)^2\)
\((x+1)-(x+1)^2=0\)
\((x+1)(1-x-1)=0\)
\((x+1)(-x)=0\)
x+1= 0 hay -x=0
x=-1 hay x=0
Vậy x=-1 hay x=0
A) \(x^2+y^2=\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-10\right)=9+20=29\)
B) \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-3\right)^3-3\left(-10\right)\left(-3\right)=-27-90=-117\)
gọi xy=k^2 với k là hằng số.
Ta có: [(x+y)/2]^2 >=xy <=>(x+y)^2 >= 4xy <=> (x+y) >= 2k =>min(x+y)=2k<=>x=y=k.
a)Xét hai số dương tích bằng a( với a là hằng số):
ta có (x+y)^2 >= 4xy=4a <=> x=y
Vì x,y >0 nên x+y nhỏ nhất <=> x=y.
ta có: \(\dfrac{4x^2}{3-2x}=\dfrac{9}{3-2x}\)ĐK : \(x\ne\dfrac{3}{2}\)
\(\Rightarrow4x^2-9=0\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow x=\dfrac{3}{2}\left(ktm\right);x=-\dfrac{3}{2}\)
-> Chọn A
Chọn B