K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

Độ cao của máy bay là CD, độ dài AB = 60m; D A C ^ = 30 0 ; D B C ^ = 50 0

Gọi BC = x => AC = 60 + x

Xét tam giác BDC vuông tại C có:

Xét tam giác ADC vuông tại C có:

Vậy độ cao của máy bay so với mặt đất là 67,19m

Đáp án cần chọn là: C

28 tháng 1 2019

Độ cao của máy bay là CD, độ dài AB = 80m

Gọi BC = x (x > 0) => AC = 80 + x

Xét tam giác BDC vuông tại C có CD = x . tan   55 0

Xét tam giác ADC vuông tại C có CD = (80 + x). tan   44 0

Suy ra  x . tan   55 0 =  (80 + x).  tan   44 0

=> x 113,96m

=> CD = 113,96. tan   55 0 ≈ 162,75m

Vậy độ cao của máy bay so với mặt đất là 162,75m

Đáp án cần chọn là: A

3 tháng 8 2021

Độ cao của máy bay là CD, độ dài AB = 80m

Gọi BC = x (x > 0) => AC = 80 + x

Xét tam giác BDC vuông tại C có CD = x . tan   55 0

Xét tam giác ADC vuông tại C có CD = (80 + x). tan   44 0

Suy ra  x . tan   55 0 =  (80 + x).  tan   44 0

=> x ≈ 113,96m

=> CD = 113,96. tan   55 0 ≈ 162,75m

Vậy độ cao của máy bay so với mặt đất là 162,75m

3 tháng 8 2021

Nguyễn Văn Phú

7 tháng 11 2019

Độ cao của máy bay là CD, độ dài AB = 100m. Đào đứng ở A, Mai đứng ở B

Gọi AD = x (0 < x < 100) => BD = 150 – x

Xét ACD vuông tại D, ta có CD = AD.cot A = x . c o t   45 0 = x

Xét ABD vuông tại D, ta có CD = BD.cot B = (150 – x). c o t   35 0

Nên x = (150 – x). c o t   35 0 => x ≈ 88,22 (thỏa mãn)

=> CD = x = 88,22m

Vậy độ cao của diều lúc đó so với mặt đất là 88,22m

Đáp án cần chọn là: D

5 tháng 6 2019

Độ cao của diều là CD, độ dài AB = 100m. Trung đứng ở A, Dũng đứng ở B

Gọi AD = x (0 < x < 100)

=> BD = 100 – x

Xét ACD vuông tại D, ta có CD = AD.tan A = x . tan   50 0

Xét ABD vuông tại D, ta có CD = BD.tan B = (100 – x). tan   40 0

Nên  x . tan   50 0  = (100 – x). tan   40 0

Vậy độ cao của diều lúc đó so với mặt đất là 49,24m

Đáp án cần chọn là: B

26 tháng 7 2017

Gọi C là vị trí của máy bay.

Kẻ CH⊥ABCH⊥AB

Trong tam giác vuông ACH, ta có:

AH=CH.cotgˆA(1)AH=CH.cot⁡gA^(1)

Trong tam giác vuông BCH, ta có:

BH=CH.cotgˆB(2)BH=CH.cot⁡gB^(2)

Từ (1) và (2) suy ra:

(AH+BH)=CH.cotgˆA+CH.cotgˆB(AH+BH)=CH.cot⁡gA^+CH.cot⁡gB^

Suy ra:

CH=ABcotgˆA+cotgˆB=ABcotg40∘+cotg30∘≈102,606(cm)



Gọi C là vị trí của máy bay

Gọi CH là độ cao của máy bay so với mặt đất

=>CH\(\perp\)AB tại H

Ta có hình vẽ sau:

loading...

Xét ΔCBA có \(\widehat{CBA}+\widehat{CAB}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+30^0+40^0=180^0\)

=>\(\widehat{ACB}=110^0\)

Xét ΔABC có \(\dfrac{BA}{sinACB}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)

=>\(\dfrac{400}{sin110}=\dfrac{AC}{sin40}=\dfrac{BC}{sin30}\)

=>\(AC\simeq273,62\left(m\right);BC\simeq212,84\left(m\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)

\(=\dfrac{1}{2}\cdot273,62\cdot212,84\cdot sin110\simeq27362,57\left(m^2\right)\)

Xét ΔACB có CH là đường cao

nên \(\dfrac{1}{2}\cdot CH\cdot AB=S_{ABC}\)

=>\(CH\cdot\dfrac{400}{2}=27362,57\)

=>\(CH\simeq136,81\left(m\right)\)

2 tháng 9 2018

Gọi C là vị trí của máy bay.

Kẻ CH ⊥ AB

Trong tam giác vuông ACH, ta có:

AH = CH.cotgA (1)

Trong tam giác vuông BCH, ta có:

BH = CH.cotgB (2)

Từ (1) và (2) suy ra: (AH + BH) = CH.cotgA + CH.cotgB

Suy ra: CH = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 ≈ 102,606 (cm)