Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(7\cdot2^{13}< 8\cdot2^{13}=2^{16}\)
d: \(3^{99}=\left(3^{33}\right)^3\)
\(11^{21}=\left(11^7\right)^3\)
mà \(3^{33}>11^7\)
nên \(3^{99}>11^{21}\)
So sánh :
a, 6^25 và 5 . 6^24
6^25 = 6^24 . 6^1 =6^24 . 6
Vì 6^24 . 6 > 5 . 6^24 ( 6 > 5 ) => 6^25 > 5 . 6^24
Vậy 6^25 > 5 . 6^24
b, 7 . 2^16 và 2^19
2^19 = 2^16 . 2^3 = 2^16 . 8
Vì 7 . 2^16 < 2^16 . 8 ( 7 < 8 ) => 7 . 2^16 < 2^19
Vậy 7 . 2^16 < 2^19
\(a)16^{19}=\left(8\times2\right)^{19}=8^{19}\times2^{19}>8^{19}>8^{15}\)
\(\Rightarrow16^{19}>8^{15}\)
\(b)81^8=\left(3^4\right)^8=3^{24}< 3^{33}=\left(3^3\right)^{11}=27^{11}\)
\(\Rightarrow27^{11}>81^8\)
\(c)625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)
\(\Rightarrow125^7>625^5\)
\(d)244^{11}>243^{11}=\left(3^5\right)^{11}=3^{55}>3^{52}=\left(3^4\right)^{13}=81^{13}>80^{13}\)
\(\Rightarrow244^{11}>80^{13}\)
\(d)31^{17}>17^{17}>17^{14}\)
\(\Rightarrow31^{17}>17^{14}\)
Bài 1:
\(\text{a) }x.x^2.x^3.x^4.x^5.....x^{49}.x^{50}\)
\(=x^{1+2+3+4+5+...+49+50}\)
\(=x^{\frac{51.50}{2}}\)
\(=x^{1275}\)
\(\text{b) Ta có:}\)
\(4^{15}=\left(2^2\right)^{15}=2^{2.15}=2^{30}\)
\(8^{11}=\left(2^3\right)^{11}=2^{3.11}=2^{33}\)
\(\text{Vì }2^{30}< 2^{33}\text{ nên }4^{15}< 8^{11}\)
Bài 2: Tìm x
\(\left(x-1\right)^4:3^2=3^6\)
\(\Rightarrow\left(x-1\right)^4=3^6\times3^2\)
\(\Rightarrow\left(x-1\right)^4=3^8\)
\(\Rightarrow\left(x-1\right)^4=3^{2.4}\)
\(\Rightarrow\left(x-1\right)^4=\left(3^2\right)^4\)
\(\Rightarrow x-1=9\)
\(\Rightarrow x=10\)
Bài 3 và bài 4 mk làm sau
Bài 1 : a) \(x.x^2.x^3.x^4.....x^{49}.x^{50}=x^{1+2+3+...+49+50}\) (Dễ rồi tự tính)
b) \(\hept{\begin{cases}4^{15}=\left(2^2\right)^{15}=2^{30}\\8^{11}=\left(2^3\right)^{11}=2^{33}\end{cases}}\)Rồi tự so sánh đi
Bài 2 :
\(\left(x-1\right)^4\div3^2=3^6\Leftrightarrow\left(x-1\right)^4=3^8=\left(3^2\right)^4=9^4\Leftrightarrow x-1=9\Leftrightarrow x=10\)
Bài 3 :
\(\hept{\begin{cases}27^{15}=\left(3^3\right)^{15}=3^{45}\\81^{11}=\left(3^4\right)^{11}=3^{44}\end{cases}}\) nt
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24
chọn đáp án đúng nhé
đề bài là j vậy Cute Boy