Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D K
a, Vì AB//CD nên BAKˆ=AKDˆ(slt)BAK^=AKD^(slt)
mà DAKˆ=AKDˆDAK^=AKD^ (tam giác ADK cân tại D)
⇒DAKˆ=KABˆ⇒DAK^=KAB^
=> AK là tia phân giác DABˆDAB^ (đpcm)
b, Theo bài ra:
DC=AD+BC⇒DC−AD=BCDC=AD+BC⇒DC−AD=BC
mà AD=KD⇒DC−KD=BCAD=KD⇒DC−KD=BC
⇒KC=BC⇒KC=BC(đpcm)
c, Vì AB//CD nên ABKˆ=BKCˆ(slt)ABK^=BKC^(slt)
mà CBKˆ=CKBˆCBK^=CKB^ (tam giác BCK cân tại C)
⇒ABKˆ=CBKˆ⇒ABK^=CBK^
⇒⇒ BK là tia phân giác của ABCˆABC^ (đpcm)
Chúc bạn học tốt!!!
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
A B C D M N H
a) \(S_{ABCD}=\frac{\left(3+7\right).4}{2}=20\left(cm^2\right)\)
b) Ta có : MA = MD
NB = NC
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow\)MN // BC (1)
Ta có : MD ⊥ BC
NH ⊥ BC
\(\Rightarrow\)MD // NH (2)
Từ (1) và (2) suy ra : Tứ giác MNHD là hình bình hành
Mà : \(\widehat{MDH}=90^o\)
\(\Rightarrow\)Tứ giác MNHD là hình chữ nhật (dhnb)
Vì M là trung điểm của AD
\(\Rightarrow\)MD = \(\frac{1}{2}\)AD
\(\Rightarrow\)MD = 2 cm
Vì MN là đường trung bình của hình thang ABCD
\(\Rightarrow MN=\frac{3+7}{2}=5cm\)
Vậy \(S_{MNHD}=MD.MN=2.5=10\left(cm^2\right)\)
Bài này khá dễ nhưng cũng nên vẽ hình nha
Cho hình thang ABCD có AD//BC------
AD+BC=AB--------------------------------
M là trung điểm CD =>CM=MD--------
Rùi tới đây làm bài------------------------
Ta cho 1 điểm mới tạm gọi N là trung điểm AB thì nối MN ta được đường trung bình hình thang ABCD-------------------------
NA=NB=\(\frac{AB}{2}\)------------------------------
NM=\(\frac{AD+BC}{2}\)=\(\frac{AB}{2}\)------------------------
Mà trong ΔAMB thì MN chính là trung tuyến----------------------------------------
NA=NB=NM=\(\frac{AB}{2}\)=>ΔAMB ⊥ tại M
=>góc AMB=90ĐỘ
màu mè chi z