K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Hãy tích cho tui đi

Nếu bạn tích tui

Tui không tích lại đâu

THANKS

22 tháng 11 2016

a/ Gọi phương trình đường thẳng cần tìm có dạng: y = ax + b

Vì đường thẳng đi qua A,B nên ta có hệ

\(\hept{\begin{cases}0=2a+b\\-2=b\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)

Vậy phương trình đường thẳng AB là:

\(y=x-2\)

b/ Ta chứng minh C thuộc đường AB

Ta thế tọa độ điểm C vào đường thẳng AB thì được

\(1=3-2\)(đúng)

Vậy C thuộc đường thẳng AB hay A,B,C thẳng hàng

2 tháng 12 2021

a) Gọi pt đường thẳng (d) đi qua 2 điểm A,B là :  y= ax +b

Ta có A(-1,1), B(2,7) thuộc (d) ⇒ \(\left\{{}\begin{matrix}1=-1.a+b\\7=2.a+b\end{matrix}\right.\)

⇒  \(\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)

⇒ pt đi qua AB (d) là y=2x+3

b)  Giả sử C(-2,-1) ∈ (d)

⇒  -1=-2.2 +3 ⇒ -1=-1( luôn đúng)

⇒  C(-2,-1) ∈(d)   ⇒ A,B,C thẳng hàng

 

16 tháng 2 2016

Vì a, b, c là 3 cạnh của một tam giác nên a, b, c > 0 và a + b > c, b + c > a, c + a > b (ĐK).

Áp dụng BĐT Cauchy cho 2 số không âm, ta có :

\(a+b\ge2\sqrt{ab}\left(1\right)\)

\(b+c\ge2\sqrt{bc}\left(2\right)\)

\(c+a\ge2\sqrt{ca}\left(3\right)\)

Nhân (1), (2) và (3) theo vế, ta có :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2^3.\sqrt{ab.bc.ca}=8abc\)

Mà theo đề bài (a+b)(b+c)(c+a)=8abc nên dấu "=" ở BĐT trên sẽ xảy ra, tức là khi và chỉ khi a = b = c (TMĐK) hay tam giác có 3 cạnh a, b, c thỏa mãn điều kiện trên là tam giác đều.

15 tháng 2 2016

bài này chỉ biết áp dụng cô-si thôi chứ ko biết chứng minh tam giác đều

18 tháng 9 2019

Vì: \(a,b,c>0\)

\(\rightarrow2a+b>0\)

\(2b+c>0\)

\(2c+a>0\)

Áp dụng BĐT SVac-xơ có

\(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\ge\frac{\left(1+1+1\right)^2}{2a+b+2b+c+2c+a}=\frac{3}{a+b+c}\)

27 tháng 6 2016

Do a;b;c khác 0 và a = b + c nên b+c cũng khác 0.

Xét biểu thức dưới căn bậc hai:

\(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{\left(c+b\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{b^2c^2+c^2\left(b+c\right)^2+b^2\left(b+c\right)^2}{b^2c^2\left(b+c\right)^2}=\)

\(P=\frac{\left(b^2+c^2\right)\left(b^2+c^2+2bc\right)+b^2c^2}{b^2c^2\left(b+c\right)^2}=\frac{\left(b^2+c^2\right)^2+2bc\left(b^2+c^2\right)+b^2c^2}{b^2c^2\left(b+c\right)^2}=\frac{\left(b^2+c^2+bc\right)^2}{b^2c^2\left(b+c\right)^2}\)

\(P=\left(\frac{b^2+c^2+bc}{bc\left(b+c\right)}\right)^2\)

\(\Rightarrow M=\left|\frac{b^2+c^2+bc}{bc\left(b+c\right)}\right|\)là 1 số hữu tỷ. đpcm