K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

A=\(\frac{-2}{3.7}\)+\(\frac{-2}{7.11}\)+\(\frac{-2}{11.15}\)+....+\(\frac{-2}{97.101}\)

A=\(\frac{-1}{2}\).(\(\frac{4}{3.7}\)+\(\frac{4}{7.11}\)+\(\frac{4}{11.15}\)+.....+\(\frac{4}{97.101}\))

A=\(\frac{-1}{2}\)(\(\frac{1}{3}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{15}\)+....+\(\frac{1}{97}\)-\(\frac{1}{101}\))

A=\(\frac{-1}{2}\).(\(\frac{1}{3}\)-\(\frac{1}{101}\))

A=\(\frac{-1}{2}\).\(\frac{104}{303}\)=\(\frac{-52}{303}\)

 

4 tháng 11 2016

a, Ta có: \(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)

\(\left(\sqrt[3]{2x+1}+\sqrt[3]{x}\right)^3=1^3\)

\(2x+1+x+3\sqrt[3]{\left(2x+1\right)x}\left(\sqrt[3]{2x+1}+\sqrt[3]{x}\right)=1\)

\(3x+1+3\sqrt[3]{\left(2x+1\right)x}=1\)

\(x+\sqrt[3]{\left(2x+1\right)x}=0\)

\(\sqrt[3]{\left(2x+1\right)x}=-x\)

\(\left(2x+1\right)x=-x^3\)

\(x^3+2x^2+x=0\)

\(x\left(x+1\right)^2=0\)

\(x=0\) hoặc \(x+1=0\)

\(x=0\) hoặc \(x=-1\)

b,ĐKXĐ: \(x\) khác 0, \(x\) >\(\frac{2}{3}\)

Áp dụng bất đẳng thức Cô-si cho 2 số dương \(\frac{x}{\sqrt{3x-2}}\)\(\frac{\sqrt{3x-2}}{x}\) ta được:

\(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}\ge2\sqrt{\frac{x}{\sqrt{3x-2}}.\frac{\sqrt{3x-2}}{x}}\)

\(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}\ge2\)

Dấu "=" xảy ra\(\Leftrightarrow\) \(x=1\) hoặc \(x=2\)

Vậy tập nghiệm của pt là S={1;2}

 

15 tháng 10 2017

3) \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\left(\dfrac{a+b+c}{abc}\right)=4-2=2\)

15 tháng 10 2017

1) \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

Đặt \(\left(x^2+y^2;xy\right)=\left(a;b\right)\)

\(\left\{{}\begin{matrix}a+b=7\\a^2-b^2=21\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=7\\\left(a-b\right)\left(a+b\right)=21\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=7\\a-b=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=5\\b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)

Tới đây tiếp tục thay vào giải, lười rồi :D

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Câu a:

ĐKXĐ: \(x\geq 1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Leftrightarrow \sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

\(\Rightarrow x-1=8x-3+2\sqrt{(3x-2)(5x-1)}\) (bình phương 2 vế)

\(\Leftrightarrow 7x-2+2\sqrt{(3x-2)(5x-1)}=0\)

(Vô lý với mọi \(x\geq 1\) )

Do đó PT vô nghiệm.

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Câu b)

PT \(\Leftrightarrow \sqrt{3(x^2+2x+1)+4}+\sqrt{5(x^2+2x+1)+9}=5-(x^2+2x+1)\)

\(\Leftrightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}=5-(x+1)^2\)

\((x+1)^2\geq 0, \forall x\) nên:

\(\sqrt{3(x+1)^2+4}\geq \sqrt{4}=2\)

\(\sqrt{5(x+1)^2+9}\geq \sqrt{9}=3\)

\(\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5(1)\)

Mặt khác ta cũng có: \(5-(x+1)^2\leq 5-0=5(2)\)

Từ \((1);(2)\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5\geq 5-(x+1)^2\)

Dấu "=" xảy ra khi $(x+1)^2=0$ hay $x=-1$ (thỏa mãn)

Vậy pt có nghiệm $x=-1$

☘ TOÁN 9 ☘ Câu 1: Cho a,b,c là các số ko âm và a+b+c=1 CM: \(\sqrt{a+1}\) +\(\sqrt{b+1}\) +\(\sqrt{c+1}\) <3,5 Câu 2: Cho biểu thức: (x+\(\sqrt{x^2+2006}\))(y+\(\sqrt{y^2+2006}\))=2006. Tính: S= x+y Câu 3: Cho bt: P= \(\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\) với x>0; x\(\ne\)4 a) Rút gọn P b) Tìm x để P>3 Câu 4: Cho bt: A= \(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x+1}}\) a) Đặt...
Đọc tiếp

TOÁN 9

Câu 1: Cho a,b,c là các số ko âm và a+b+c=1

CM: \(\sqrt{a+1}\) +\(\sqrt{b+1}\) +\(\sqrt{c+1}\) <3,5

Câu 2: Cho biểu thức: (x+\(\sqrt{x^2+2006}\))(y+\(\sqrt{y^2+2006}\))=2006. Tính: S= x+y

Câu 3: Cho bt: P= \(\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\) với x>0; x\(\ne\)4

a) Rút gọn P

b) Tìm x để P>3

Câu 4: Cho bt: A= \(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x+1}}\)

a) Đặt điều kiện để bt A có nghĩa

b) Rút gọn bt A

c) Với giá trị nào của thì A<1

Câu 5: Cho bt : M= \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

a) Tìm ĐKXĐ của M

b) Rút gọn bt

c) Tìm giá trị của a để M=-4

Câu 6: Rút gọn bt:

a) 4x+\(\sqrt{\left(x-12\right)^2}\) ( x\(\ge\)2 )

b) x+2y-\(\sqrt{\left(x^2-4xy+4y^2\right)}\) ( x\(\ge\)2y)

☛❤ giúp mk vs nha ❤✔☺☺

1
12 tháng 1 2018

câu 5

Hỏi đáp Toán

13 tháng 1 2018

thanks ☺☺

26 tháng 10 2019

Câu1. Ta có\(\sin^2\alpha+\cos^2\alpha=1\Leftrightarrow\sin^2\alpha=1-\cos^2\alpha=1-\left(\frac{1}{4}\right)^2\)

\(=\frac{15}{16}\Rightarrow\sin\alpha=\frac{\sqrt{15}}{4}\)

\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\sqrt{15}}{4}:\frac{1}{4}=\sqrt{15}\)\(=4\sin\alpha\)

Câu2.

Ta có: \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}=5\Leftrightarrow\cos\alpha+\sin\alpha=5\cos\alpha-5\sin\alpha\)

\(\Leftrightarrow4\cos\alpha=6\sin\alpha\Leftrightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{2}{3}\)

\(\Rightarrow\tan\alpha=\frac{2}{3}\)

10 tháng 10 2021

\(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)

\(\left(\sqrt{3x^2-12x+21}-3\right)+\left(\sqrt{5x^2-20x+24}-2\right)=-2x^2+8x-8\)

\(\frac{3x^2-12x+21-9}{\sqrt{3x^2-12x+21}+3}+\frac{5x^2-20x+24-4}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)

\(\frac{3x^2-12x+12}{\sqrt{3x^2-12x+21}+3}+\frac{5x^2-20x+20}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)

\(\frac{\left(x-2\right)\left(3x-6\right)}{\sqrt{3x^2-12x+21}+3}+\frac{\left(x-2\right)\left(5x-10\right)}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)

\(\left(x-2\right)\left(\frac{3x-6}{\sqrt{3x^2-12x+21}+3}+\frac{5x-10}{\sqrt{5x^2-20x+24}}-4+2x\right)=0\)

\(\orbr{\begin{cases}x=2\left(TM\right)\\\frac{3x-6}{\sqrt{3x^2-12x+21}+3}+\frac{5x-10}{\sqrt{5x^2-20x+24}}-4+2x\ne0\left(KTM\right)\end{cases}}\)

vậy pt có nghiệm duy nhất là 2

10 tháng 10 2021

Mà bạn ơi, tại sao cái về sau khác 0 được vậy bạn ? Sao mình không đặt (x-2)^2 luôn nhỉ? Dù sao cũng cảm ơn ha!