Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1\dfrac{5}{13}-0,\left(3\right)-\left(1\dfrac{4}{9}+\dfrac{18}{13}-\dfrac{1}{3}\right)\)
\(=\dfrac{18}{13}-\dfrac{1}{3}-\dfrac{13}{9}-\dfrac{18}{13}+\dfrac{1}{3}\)
\(=-\dfrac{13}{9}\)
\(\dfrac{1}{7}-\left(-\dfrac{3}{5}\right)+\dfrac{6}{7}-\left|-\dfrac{1}{5}\right|=1+\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{9}{5}\\ \dfrac{8}{13}\cdot\dfrac{11}{18}+\dfrac{7}{18}\cdot\dfrac{8}{13}-1\dfrac{8}{13}=\dfrac{8}{13}\left(\dfrac{11}{18}+\dfrac{7}{18}+1\right)=\dfrac{8}{13}\cdot2=\dfrac{16}{13}\)
\(\dfrac{1}{7}-\left(-\dfrac{3}{5}\right)+\dfrac{6}{7}-\left|-\dfrac{1}{5}\right|\)
\(=\dfrac{1}{7}+\dfrac{3}{5}+\dfrac{6}{7}-\dfrac{1}{5}\)
\(=1+\dfrac{2}{5}=\dfrac{7}{5}\)
Ta có 3^21 = 3 * 9^10 > 3 * 8 ^10 > 2*8^10 = 2*2^30 = 2^31
Ta có 2^300 = 8^100 < 9 ^100 = 3^200
Ta có 32^9 = 2^45 và 18^13 = 2^13 * 3^26 bây giờ ta sẽ so sánh 3^26 với 2^32
ta thấy 3^26 = 9^13 > 8 ^13 = 2^39 > 2^32 => 3^26 > 2^32 <=> 3 ^26 * 2^13 > 2^32*13 <=> 18^13 > 2^45 = 32^9
Ta có 18^13 = 2^13 * 3^26 ta sẽ so sánh 2^13 với 3^8
ta thấy 3^8 = 6561 < 8192 = 2^13 nên 18^13 > 3^34
Bài 1:
\(=\dfrac{-1}{2}+\dfrac{3}{5}-\dfrac{1}{9}+\dfrac{1}{131}+\dfrac{2}{7}+\dfrac{4}{35}-\dfrac{7}{18}\)
\(=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{131}\)
\(=\dfrac{-9-2-7}{18}+\dfrac{21+10+4}{35}+\dfrac{1}{131}\)
=1/131
Bài 2:
b: \(B=\dfrac{1}{99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{98\cdot99}\right)\)
\(=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-\dfrac{98}{99}=-\dfrac{97}{99}\)
\(B=\left(-\frac{5}{9}\right).\frac{3}{11}+\left(-\frac{13}{18}\right).\frac{3}{11}\)
\(B=-\frac{5}{9}.\frac{3}{11}+-\frac{13}{18}.\frac{3}{11}\)
\(B=\frac{3}{11}.\left(-\frac{5}{9}+-\frac{13}{18}\right)\)
\(B=\frac{3}{11}.-\frac{23}{18}\)
\(B=-\frac{23}{66}\)