Cho đường tròn (O; 2cm) và điểm M nằm ngoài (O) sao cho hai tiếp tuyến MA, MB kẻ từ M đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

a) tứ giác ABOC là hình vuông

vì BAC = 90 (giả thiết)

ABO = 90 (AB là tiếp tuyến)

ACO = 90 (AC là tiếp tuyến)

AB = AC (tính chất 2 tiếp tuyến cắt nhau)

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

30 tháng 3 2022

hi

love

28 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất của hai tiếp tuyến cắt nhau ta có :

DB = DM

EM = EC

Chu vi của tam giác ADE bằng :

AD + DE + EA = AD + DM + ME + EA

= AD + DB + AE + EC = AB + AC = 2AB

Mà tứ giác ABOC là hình vuông (chứng minh trên) nên:

AB = OB = 2 (cm)

Vậy chu vi của tam giác ADE bằng: 2.2 = 4 (cm)

15 tháng 1 2022

Giải thích các bước giải:

MO là t.p.g. của AMBˆAMB^

⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450

⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân

=> OA = AM = MB = BO

=> OAMB là h.thoi có AMBˆ=900AMB^=900

=> OAMB là h.v.

b)

PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ

=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)

=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)

=MA+MB=MA+MB

=2OA=2OA

=2R=2R

c)

OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^

⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)

OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^

⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)

Cộng theo vế của (1) và (2), ta có:

COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^

⇒POQˆ=450

Giải thích các bước giải:

MO là t.p.g. của AMBˆAMB^

⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450

⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân

=> OA = AM = MB = BO

=> OAMB là h.thoi có AMBˆ=900AMB^=900

=> OAMB là h.v.

b)

PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ

=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)

=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)

=MA+MB=MA+MB

=2OA=2OA

=2R=2R

c)

OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^

⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)

OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^

⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)

Cộng theo vế của (1) và (2), ta có:

COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^

⇒POQˆ=450vv