Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)tam.... giác ABM và tam giác ACM có:
AB=AC(GT)
cạnh AM chung
AM=BM(M là trung điểm)
=>tg ABM=TG ACM(C-C-C)
b)Xét tg AMC và tg EMB có
BME=AMC(Đối đỉnh)
BM=MC(M là trung điểm)
ME=MA(GT)
=>tg AMC=tg EMB(C-G-C)
=> MBE=ACM(2 góc tương ứng)
Mà 2 góc nằm đúng vị trí sole trong
=> AC//BE
c)
A B E H C F 1 3 2
Ta có: \(BE=BH\left(gt\right)\Rightarrow\Delta BEH\)cân tại B \(\Rightarrow\widehat{E}=\widehat{H_1}\)
Do \(\widehat{ABH}\)là góc ngoài của \(\Delta BHE\)nên: \(\widehat{ABH}=\widehat{E}+\widehat{H_1}\Rightarrow\widehat{ABH}=2.\widehat{H_1}\)
Mà \(\widehat{ABH}=2.\widehat{C}\)
\(\Rightarrow2.\widehat{H_1}=2.\widehat{C}\Rightarrow\widehat{H_1}=\widehat{C}\)
mà \(\widehat{H_1}\)và \(\widehat{H_2}\)( đối đỉnh )
\(\Rightarrow\widehat{C}=\widehat{H_2}\Rightarrow\Delta HFC\)cân tại F \(\Rightarrow FH=FC\left(1\right)\)
Ta có: \(\widehat{H_2}+\widehat{H_3}=90^0\)( cùng phụ nhau )
\(\widehat{A_1}+\widehat{C}=90^0\)( do \(\Delta AHC\)vuông tại H )
Mà \(\widehat{H_2}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{H_3}\Rightarrow\Delta AFH\)cân tại F \(\Rightarrow AF=FH\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow FH=FA=FC\)