Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H = 1/4 . 2/6 . 3/8 . 4/10. ... . 30/62 . 31/64
H= 1/2.2 . 2/2.3 . 3/2.4 . 4/2.5 . ... . 30/2.31 . 31/2.32
H = 1/2 . 1/2 . 1/2 . 1/2 . ... . 1/2 . 1/32 (31 số 1/2)
H = 1/2^31 . 1/2^5
H = 1/2^36
Vậy H = 1/2^36
H = \(\dfrac{1}{4}\).\(\dfrac{2}{6}\).\(\dfrac{3}{8}\)...........\(\dfrac{30}{62}\).\(\dfrac{31}{64}\)
H = \(\dfrac{1}{2.2}\).\(\dfrac{2}{2.3}\).........\(\dfrac{31}{2.32}\)
H = \(\dfrac{1.2.3......31}{2.2.2.3.........2.32}\)
H = \(\dfrac{1}{256}\)
a ) \(\frac{2.9+6.7}{8.5+4.2}\)
= \(\frac{2.9+2.3.7}{2.2.2.5+4.2}\)
= \(\frac{9+3.7}{2.5+4.2}\)= \(\frac{30}{18}\)= \(\frac{5}{3}\)
a, 2.9+6.7/8.5+4.2
=2.3.3+2.3.7/2.4.5+2.4
=2.3.(3+7)/2.4.(5+1)
=30/24
=5/4
b,297-15/1188-60
=282/1128
=1/4
c, 2^5.3^7+2^5.3^2/2^6.3^10
=2^5.(3^7+3^2)/2.2^5.3^10
=3^9/2.3.3^9
=1/6
a) Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1< 2^{101}\)
B = 4^9.36+64^4
16^4.100
B = 2^20.(9+16)
2^18.5^2
B = 2^20.5^2
2^18.5^2
B = 2^2
B = 4
D = 4^6.3^4.9^5
6^12
D = 2^12.3^4.9^5
2^12.3^12
D = 2^12.3^14
2^12.3^12
D = 3^2
D = 9
\(\frac{4^9.36+64^4}{16^4.100}=\frac{4^{10}\left(9+8\right)}{4^{10}.25}=\frac{17}{25}\)
\(H=\frac{1}{4}.\frac{2}{6}.\frac{3}{8}...\frac{30}{62}.\frac{31}{64}\)
\(\Rightarrow H=\frac{1.2.3...30.31}{2.2.2.3.2.4...2.31.2.32}=\frac{1}{2^{31}.2^5}=\frac{1}{2^{36}}\)