Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\left(x+1\right)-1=3-\left(1-2x\right)\)
\(\Leftrightarrow2x+2-1=3-1+2x\)
\(\Leftrightarrow2x-2x=-2+1+3-1\)
\(\Leftrightarrow0x=1\)(vô lí)
Vậy tập nghiệm của phương trình trên bằng \(S=\varnothing\)
b)\(\left(5x-1\right)^2-x^2-8x-16=0\)
\(\Leftrightarrow\left(5x-1\right)^2-\left(x^2+8x+16\right)=0\)
\(\Leftrightarrow\left(5x-1\right)^2-\left(x+4\right)^2=0\)
\(\Leftrightarrow\left(5x-1-x-4\right)\left(5x-1+x+4\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(6x+3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}4x-5=0\\6x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\x=-\frac{1}{2}\end{cases}}}\)
Vậy tập nghiệm của phương trình trên bằng\(S=\left\{\frac{5}{4};-\frac{1}{2}\right\}\)
#hoktot<3#
a, \(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+15\)
\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+15=15\)
a, ta có (x-1)(2x-1)=0
<=> x-1=0 <=> x=1
2x-1=0 x=1/2
để mx2-(m+1)x+1=0 tương đương với (x-1)(2x-1)=0
<=> m-m-1+1=0 có cùng tập nghiệm với (x-1)(2x-1)=0
với x=1 thì m-(m+1)+1=0
<=>m-m-1+1=0
<=> 0 m = 0 ( lđ )
Với x=1/2 thì 1/4m - (m+1)1/2+1=0
<=> 1/4m - (m+1)1/2+1=0
<=> 1/4m - 2(m+1)/4 +4/4 =0
<=>m-2m-2+4=0
<=> -m +2=0
<=> -m=-2
<=>m=2
b; Ta có: (x-3)(ax+2)=0 và (2x+b)(x+1)=0.
=> (x-3)(ax+2)=(2x+b)(x+1).
<=> ax2+(2-3a)x-6=2x2+(2+b)x+b.
<=>a=2 và 2-3a=2+b và b=-6 (Hai phương trình bậc 2 bằng nhau thì các hệ số tương ứng sẽ bằng nhau).
Vậy a=2; b=-6 thỏa mãn phương trình trên.
Ta có: 3x2 - 3y2 - 12x + 12y
= (3x2 - 3y2) - (12x - 12y)
= 3.(x2 - y2) - 12.(x - y)
= 3.(x - y).(x + y) - 4.3(x - y)
= 3.(x - y).(x + y - 4)
Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.
Bài 2:
a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)
\(=4x^2+20x+25\)
b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)
\(=9x^2+24x+16\)
c/\(\left(3x+5y+\frac{1}{2}\right)^2\)
Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)
\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)
Bài 3:
a/ A= x2+10x+30
A= x2+2.5x+25+5
A= x2+2.5.x+52+5
A=(x+5)2+5
Ta có (x+5)2 luôn luôn > hoặc = 0
=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)
=> A luôn dương.
b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)
\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)
(Tương tự như câu A)
Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0
=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)
=> B luôn dương.
c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)
(Chứng minh tương tự câu a, b)
Chúc bạn học tốt!!
mk giúp bạn bài 3 còn bài 1, 2 tự làm nha
a , A = x2 + 10x +30
= (x2 + 2 . 5 . x +52 ) +5
= (x+5)2 + 5
Vì (x+5)2 >= 0 (luôn đúng)
=> (x+5)2 + 5 luôn luôn dương
\(\left(2a+b\right)^2-\left(2a+a\right)^2\)
\(=\left(2a+b-2a-a\right)\left(2a+b+2a+a\right)\)
\(=\left(b-a\right)\left(5a+b\right)\)
\(\left(2a+b\right)^2-\left(2a+a\right)^2\)
\(=\left(2a+b\right)^2-\left(3a\right)^2\)
\(=\left(2a+b-3a\right)\left(2a+b+3a\right)\)
\(=\left(b-a\right)\left(5a+b\right)\)
Bài 1:
a) \(x^3-5x^2+8x-4\)
\(=x^3-4x^2+4x-x^2+4x-4\) \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)
b) Ta có: \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Với \(x\in Z\)thì \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)
Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.
Bài 1:
a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4
=x(x2-4x-4)-(x2-4x+4)
=(x-1) (x-2)2
b)Xét:
\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)
=\(5x+4+\frac{7}{2x-3}\)
Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc Z => 7 /\ (2x-3)
Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B
c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)
=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)
=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)
=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)
=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)
=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)
=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh
Bài 2 )
a)(x2+x)2+4(x2+x)=12 đặt y=x2+x
y2+4y-12=0 <=>y2+6y-2y-12=0
<=>(y+6)(y-2)=0 <=> y=-6;y=2
>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x
>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0
<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=> x=-2;x-1
Vậy nghiệm của phương trình x=-2;x=1
b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)
=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
Nhờ OLM xét giùm em vs ạ !
Bài 1:
\(P=3x^2+x-1\)
\(=3\left(x^2+\frac{1}{3}x-\frac{1}{3}\right)\)
\(=3\left(x^2+2x.\frac{1}{6}+\frac{1}{36}-\frac{13}{36}\right)\)
\(=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge\frac{-13}{12}\)\(\forall x\)
Dấu '' = '' xảy ra khi: \(\left(x+\frac{1}{6}\right)^2=0\Rightarrow x=\frac{-1}{6}\)
Vậy \(MinP=\frac{-13}{12}\) khi \(x=\frac{-1}{6}\)
Bài 2:
a) Không có điều kiện
b) Nghiệm vô tỉ
Bạn xem lại đề hai phần này nhé.
c) \(\left(x-2\right)^3-x^3+6x^2=14\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2-14=0\)
\(\Rightarrow\left(x^3-x^3\right)+\left(-6x^2+6x^2\right)+12x+\left(-8-14\right)=0\)
\(\Rightarrow12x-22=0\)
\(\Rightarrow x=\frac{11}{6}\)
d) \(8x^2+30x+7=0\)
\(\Rightarrow8x^2+28x+2x+7=0\)
\(\Rightarrow\left(8x^2+28x\right)+\left(2x+7\right)=0\)
\(\Rightarrow4x\left(2x+7\right)+\left(2x+7\right)=0\)
\(\Rightarrow\left(4x+1\right)\left(2x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x+1=0\\2x+7=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-1\\2x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{-7}{2}\end{cases}}\)
:> Easy
@Ngọc Ly : \(A^2+2AB+B^2\)
\(\left(A+B\right)^2=A^2+2AB+B^2\)