\(GTNN\)\(D=\frac{x-2}{\sqrt{x}+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

\(ĐKXĐ:x\ge0\)

Đặt:\(\sqrt{x}=y\ge0\)\(\Rightarrow D=\frac{y^2-2}{y+1}\)\(\Rightarrow Dy+2D=y^2-2\)

\(\Rightarrow y^2-Dy-2D-2=0\)

\(\Delta=D^2-4.\left(-2D-2\right).1\ge0\)

\(\Leftrightarrow D^2+8D+8\ge0\)

\(\Leftrightarrow\left(D+4\right)^2\ge8\Leftrightarrow-2\sqrt{2}-4\le D\le2\sqrt{2}-4\)

Nên GTNN của D là \(-2\sqrt{2}-4\)

AH
Akai Haruma
Giáo viên
1 tháng 7 2020

Lời giải:

ĐK để tồn tại các biểu thức là $x\geq 0$

a) Ta thấy: $\sqrt{x}\geq 0\Rightarrow \sqrt{x}+5\geq 5$

$\Rightarrow A=\frac{2}{\sqrt{x}+5}\leq \frac{2}{5}$

Vậy $A_{\max}=\frac{2}{5}$ khi $x=0$

b) $\sqrt{x}+7\geq 7$

$\Rightarrow \frac{1}{\sqrt{x}+7}\leq \frac{1}{7}$

$\Rightarrow B=\frac{-3}{\sqrt{x}+7}\geq \frac{-3}{7}$

Vậy $B_{\min}=\frac{-3}{7}$ khi $x=0$

c)

$2\sqrt{x}+1\geq 1\Rightarrow C=\frac{5}{2\sqrt{x}+1}\leq 5$

Vậy $C_{\max}=5$ khi $x=0$

d)

$3\sqrt{x}+2\geq 2\Rightarrow \frac{1}{3\sqrt{x}+2}\leq \frac{1}{2}$

$\Rightarrow D=\frac{-7}{3\sqrt{x}+2}\geq \frac{-7}{2}$

Vậy $B_{\min}=\frac{-7}{2}$ khi $x=0$

11 tháng 2 2020

A = \(x^2+3x-7=x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{37}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{37}{4}\ge-\frac{37}{4}\)

\(\Rightarrow\)min A = \(-\frac{37}{4}\Leftrightarrow x=-\frac{3}{2}\)

B = \(x-5\sqrt{x}-1\) ĐKXĐ: \(x\ge0\)

\(=x-2\sqrt{x}\frac{5}{2}+\frac{25}{4}-\frac{29}{4}=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)

\(\Rightarrow\)min B = \(-\frac{29}{4}\Leftrightarrow x=\frac{25}{4}\)( thỏa mãn)

C = \(\frac{-4}{\sqrt{x}+7}\) ĐKXĐ:\(x\ge0\)

Ta có: \(\sqrt{x}+7\ge7\Rightarrow\frac{4}{\sqrt{x}+7}\le\frac{4}{7}\)\(\Leftrightarrow\frac{-4}{\sqrt{x}+7}\ge-\frac{4}{7}\)

\(\Rightarrow\)min C = \(-\frac{4}{7}\Leftrightarrow x=0\)

D = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)

\(\Rightarrow\)min D = \(\frac{1}{3}\Leftrightarrow x=0\)

11 tháng 2 2020

E = \(\frac{x+7}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=\frac{x-9+16}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{16}{\sqrt{x}+3}=\sqrt{x}+3+\frac{16}{\sqrt{x}+3}-6\ge2\sqrt{16}-6=2\)

\(\Rightarrow\)min E = \(2\Leftrightarrow x=1\)(thỏa mãn)

F = \(\frac{x^2+3x+5}{x^2}\) ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\)\(x^2\left(F-1\right)-3x-5=0\)

△ = \(3^2+20\left(F-1\right)\ge0\)\(\Leftrightarrow F\ge\frac{11}{20}\)

\(\Rightarrow\)min F = \(\frac{11}{20}\Leftrightarrow x=-\frac{10}{3}\)( thỏa mãn)

22 tháng 6 2017

c/ \(C=\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)

\(=\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}\)

\(=|3-x|+|x+5|\ge|3-x+x+5|=8\)

d/ \(D=\sqrt{x^2-6x+9}+\sqrt{4x^2+24x+36}\)

\(=\sqrt{\left(x-3\right)^2}+\sqrt{4\left(x+3\right)^2}\)

\(=|3-x|+|x+3|+|x+3|\ge|3-x+x+3|+0=6\)

e/ \(2E=\sqrt{x^2}+2\sqrt{x^2-2x+1}\)

\(=\sqrt{x^2}+2\sqrt{\left(x-1\right)^2}\)

\(=|x|+|1-x|+|x-1|\ge|x+1-x|+0=1\)

\(\Rightarrow E\ge\frac{1}{2}\)

28 tháng 9 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}=\sqrt{\left(x+1\right)^2}-\sqrt{\left(1-x\right)^2}\)

= | x+1 | - | 1-x | \(\ge\left|x+1+1-x\right|=\left|2\right|=2\)

dấu "=" xảy ra <=> \(\left(x+1\right)\left(1-x\right)\ge0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\1-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\1-x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-1\\x\le1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\end{matrix}\right.\)

<=> \(-1\le x\le1\)

Vậy min C = 1 khi và chỉ khi \(-1\le x\le1\)

28 tháng 9 2019

min B nha . câu C tương tự

11 tháng 8 2020

Giair tiếp nx chứ thịnh

hết cỡ rồi