K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

d

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Lời giải:

ĐKXĐ: $x^2-8x+15\geq 0$
Ta thấy $\sqrt{x^2-8x+15}\geq 0$ với mọi $x^2-8x+15\geq 0$ theo tính chất căn bậc 2

$\Rightarrow$ GTNN của biểu thức là $0$ 

Đáp án A.

b: Phương trình hoành độ giao điểm là:

-x+3=-2x+1

\(\Leftrightarrow x=-2\)

Thay x=-2 vào y=-x+3, ta được;
y=2+3=5

Thay x=-2 và y=5 vào (d), ta được:

\(-2\left(2-m\right)+2m-1=5\)

\(\Leftrightarrow2m-4+2m-1=5\)

\(\Leftrightarrow4m=10\)

hay \(m=\dfrac{5}{2}\)

8: DKXĐ: x-1>=0 và 2-2x>=0

=>x>=1 và x<=1

=>x=1

9: ĐKXĐ: x^2-1>=0 và 4-4x^2>=0

=>x^2>=1 và x^2<=1

=>x^2=1

=>x=1 hoặc x=-1

10: ĐKXĐ: x-1>=0 và 3-x>=0

=>1<=x<=3

NV
22 tháng 3 2022

a. Phương trình có nghiệm \(x=-1\) nên:

\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)

\(\Leftrightarrow1+2m-2+m-5=0\)

\(\Leftrightarrow m=2\)

Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)

b.

\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=4\left(m-1\right)^2-2\left(m-5\right)\)

\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)

cac ban giai giup minh voi

:(((

5 tháng 4 2019

Mik cần gấp vì chj nay phải đi hok.