K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Lời giải:

Ta thấy $(x+1)^2\geq 0$ với mọi $x$

$\Rightarrow 2(x+1)^2\geq 0$

$\Rightarrow 2(x+1)^2-3\geq 0-3=-3$

Vậy GTNN của biểu thức là $-3$. Giá trị này đạt được tại $x+1=0$

$\Leftrightarrow x=-1$

---------------------------

$(2x-1)^2\geq 0$ với mọi $x$

$\Rightarrow 4-(2x-1)^2\leq 4-0=4$
Vậy GTLN của biểu thức là $4$. Giá trị này đạt được tại $2x-1=0$

$\Leftrightarrow x=\frac{1}{2}$

9 tháng 5 2019

Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1

=>2 và 1 cũng là nghiệm của B(x)

<=>B(1)=0 và B(2)=0

<=>2+a+b+4=0 và 16+4a+2b+4=0

<=>a+b=-6 và 2(2a+b)=-20

<=>a+b=-6 và 2a+b=-10

Suy ra:a=-4 và b=-2

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

a) Ta có:

\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)

\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)

\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)

14 tháng 4 2017

để A(x)=B(x)
=>2x^2-5x+1=2x^2-3x-4
=> -5x+1=-3x-4
=> 2x=5
=> x=5/2

22 tháng 3 2020

a) \(P=\left(-\frac{2}{3}x^3y^2\right).\left(\frac{3}{5}x^2y^5\right)\)

\(P=\left(-\frac{2}{3}\cdot\frac{3}{5}\right).\left(x^3\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\)

\(P=-\frac{2}{5}x^5y^7\)

Hệ số là  \(-\frac{2}{5}\); Phần biến là \(x^5y^7\)

Bậc của đơn thức là 12

b) Thay \(x=\frac{5}{2}\)vào đơn thức M(x), ta được :

     \(2\cdot\left(\frac{5}{2}\right)^2-7\cdot\frac{5}{2}+5=0\)

\(\Leftrightarrow\frac{25}{2}-\frac{35}{2}+5=0\)

\(\Leftrightarrow-5+5=0\)

\(\Leftrightarrow0=0\)(TM)

Vậy \(x=\frac{5}{2}\)là nghiệm của đơn thức M(x) (ĐPCM)

Thay \(x=-1\)vào đơn thức M(x), ta được :

      \(2\cdot\left(-1\right)^2-7\cdot\left(-1\right)+5=0\)

\(\Leftrightarrow2+7+5=0\)

\(\Leftrightarrow14=0\)(KTM)

Vậy \(x=-1\)không phải là nghiệm của đơn thức M(x) (ĐPCM)