K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MN
2
15 tháng 10 2016
Áp dụng BĐT Cauchy ta có :
\(\frac{x^2+2}{\sqrt{x^2+1}}=\frac{x^2+1+1}{\sqrt{x^2+1}}=\sqrt{x^2+1}+\frac{1}{\sqrt{x^2+1}}\ge2\sqrt{\sqrt{x^2+1}.\frac{1}{\sqrt{x^2+1}}}=2\)
Vậy BT đạt giá trị nhỏ nhất bằng 2 khi x = 0
15 tháng 10 2016
\(\frac{x^2+2}{\sqrt{x^2+1}}=\sqrt{x^2+1}+\frac{1}{\sqrt{x^2+1}}\)
= (\(\sqrt[4]{x^2+1}-\frac{1}{\sqrt[4]{x^2+1}}\))2 + 2\(\ge2\)
Vậy GTNN là 2 đạt được khi x = 0
29 tháng 9 2016
Ta có x2 + y2\(\ge2xy\)
<=> x2 + y2 \(\ge\frac{\left(x+y\right)^2}{2}\)= 5
Khi x = y = \(\frac{\sqrt{10}}{2}\)
29 tháng 9 2016
Mình đã trả lời câu hỏi này của bạn rồi! Bạn vui lòng kiểm tra lại nhé :)
Điều kiện x \(\ge0\)
Với x1 \(\ge\)x2 thì f(x1) - f(x2)
= x12 + x1 + √x1 - x22 - x2 - √x2 = (√x1 - √x2)(√x1 + √x2)(x1 + x2) + (√x1 - √x2)(√x1 + √x2) + (√x1 - √x2)
= (√x1 - √x2)[(√x1 + √x2)(x1 + x2) + (√x1 + √x2) + 1] \(\ge0\)
Vậy hàm số này đồng biến trên x \(\ge0\)
Vậy A đạt GTNN khi x đạt GTNN hay A = 7 khi x = 0
Điều kiện x > hoặc = 0. Do đó x^2; x; căn bậc hai của x đều > hoặc = 0. Do đó A > hoặc = 7.
Amin = 7 khi và chỉ khi x = 0