K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2016

=>2A=2x^2+2y^2-10x-8y+4004

=>2A=x^2+2xy+y^2+x^2-10+25+y^2-8y+16+3963

=(x+y)^2+(x-5)^2+(x-4)^2+3963\(\ge\)3963

=>A\(\ge\)\(\frac{3963}{2}\)

5 tháng 3 2016

hế hế sai đấy nhé

9 tháng 3 2016

a.1995

b.3

9 tháng 3 2016

a1995

b3

1 tháng 3 2016

2A= (x2 + y2 + 2xy) + (x2 -10x + 25) + (y2 – 8y + 16) +2002 – (16+25) 
2A= (x + y)2 + (x - 5)2 + (y - 4)2 + 1961. 
Từ biểu thức tổng của các số dương trên ta so sánh từng cặp giá trị (x;y) sao cho các số dương trên nhận giá trị bằng 0 ta có các cặp như sau: (0;0); (0;4); (5;0); (5;4) ta tìm GTNN của A là ½(1961+25+16)

23 tháng 11 2016

M=(x+y/2-5/2)^2+2.5y/4-4y-25/4-y^2/4+(y^2-4y+2012) (kiem tra phan nay len lam nhap rut gon luon)

M=(x+y/2-5/2)^2+3/4(y^2-10y+25)+(2012-25/4-3.25/4)

M=(x+y/2-5/2)^2+3/4.(y-5)^2+(.....)

GTNN=(.....)

tai: y=5

2x+5-5=0=> x=0

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Giá trị min đạt được khi $y=1$ và $x=2$

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Lời giải:

PT \(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2023-M)=0(*)\)

Coi đây là pt bậc 2 ẩn $x$

Vì biểu thức $M$ tồn tại đồng nghĩa với $(*)$ có nghiệm nên:

\(\Delta=(y-5)^2-4(y^2-4y+2023-M)\geq 0\)

\(\Leftrightarrow 4M\geq 3y^2-6y+8067\)

Mà: $3y^2-6y+8067=3(y-1)^2+8064\geq 8064$

$\Rightarrow 4M\geq 8064\Rightarrow M\geq 2016$

Vậy $M_{\min}=2016$

1 tháng 3 2016

A=x2+y2+xy-5x-4y+2002

2A=x2+2xy+y2+x2-10x+25+y2-8y+16+1961

2A=\(\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2+1961\ge1961\)

19 tháng 8 2019

Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

Đến đây đánh giá cô si + kết hợp giả thiết là xong:D

NV
2 tháng 7 2020

\(P=\frac{1}{4x^2+2}+\frac{1}{4y^2+2}+\frac{1}{6xy}+\frac{1}{6xy}+\frac{5}{3xy}\)

\(P\ge\frac{16}{4x^2+4y^2+12xy+4}+\frac{5}{3xy}=\frac{16}{4\left(x+y\right)^2+4xy+4}+\frac{5}{3xy}\)

\(P\ge\frac{16}{4\left(x+y\right)^2+\left(x+y\right)^2+4}+\frac{5}{3.\frac{1}{4}\left(x+y\right)^2}=\frac{7}{3}\)

\(P_{min}=\frac{7}{3}\) khi \(x=y=1\)