Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{3,3}{1,5+x^2}\) đạt GTLN thì 1,5+x2 đạt GTNN
Vì x2 > 0 nên GTNN của x = 0 => 1,5+x2 = 1,5
\(\frac{3,3}{1,5}\)=2,2
Vậy x = 2,2
wow!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(x^2\ge0\Rightarrow1,5+x^2\ge1,5\) nên
\(B=\frac{3,3}{1,5+x^2}\le\frac{3,3}{1,5}=2,2\)
\(B_{max}=2,2\)dấu = sảy ra khi x= 0
Để \(B\) có \(GTLN\) thì \(1,5+x^2\) đạt \(GTNN\)
Ta có: \(x^2+1,5\ge1,5\)
Min \(x^2+1,5=1,5\) khi \(x=0\)
Vậy \(GTLN\) của \(B\) bằng \(2,2\) khi \(x=0\)
+) \(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\Leftrightarrow\frac{17}{3}x+\frac{5}{3}=\frac{9}{2}\Leftrightarrow\frac{17}{3}x=\frac{17}{6}\Leftrightarrow x=\frac{1}{2}\)
+) \(\frac{x}{27}=\frac{-2}{9}\Leftrightarrow x=\frac{-2}{9}.27=-6\)
+) \(\left|x+1,5\right|=2\Leftrightarrow\orbr{\begin{cases}x+1,5=2\\x+1,5=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,5\\x=-3,5\end{cases}}}\)
+) \(A=\left|x-1004\right|-\left|x+1003\right|\)
Ta có BĐT \(\left|x\right|-\left|y\right|\le\left|x-y\right|,\)dấu "=" xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)
Áp dụng: \(A=\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=\left|-2007\right|=2007\)
Vậy \(maxA=2007\Leftrightarrow\left(x-1004\right)\left(x+1003\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)
GTLN của B <=>x^2=0=>x=0=>GTLN của B=3,3/1,5=33/15 làm tắt đấy
\(\text{Ta có : }x^2\ge0\)
\(\Rightarrow1,5+x^2\ge1,5\)
\(\Rightarrow B=\frac{3,3}{1,5+x^2}\le\frac{3,3}{1,5}=2,2\)
\(\text{Vậy Max}_B\text{ }=2,2\Leftrightarrow x^2=0\Leftrightarrow x=0\)