Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Hai tam giác vuông BID và BIE có:
BI là cạnh chung
=(gt)
nên ∆BID=∆BIE.
(cạnh huyền - góc nhọn)
Suy ra ID=IE (1)
Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).
Suy ra: IE =IF (2)
Từ (1)(2) suy ra: ID=IE=IF
Câu 1:Cho tam giác đều ABC. Lấy các điểm A,E,F theo thứ tự thuộc các cạnh AB,BC,CA sao cho AD=BE=CF. Chứng minh rằng tam giác DEF là tam giác đều.
Xét tam giác DEB và tam giác EFC có :
góc A = góc B
DB=EC (cmt )
BE=FC (gt )
=> tam giác DEB = tam giác EFC ( c.g.c)
=> DE = EF ( 2 cạnh tương ứng ) (1)
Xét tam giác EF và tam giác DFA có :
góc C = góc A
EC = AF ( cmt )
AD = FC ( gt )
=> tam giác EFC = tam giác DFA
=> AD = FC ( 2 cạnh tương ứng ) (2)
Từ (1) và (2) => DE=EF=DF
Xét tam giác DEF có : DE=EF=DF ( cmt )
=> tam giác DEF là tam giác đều
TA CÓ AM LÀ TRUNG TUYẾN CỦA BC MÀ BC=CM+BM=>CM=BM=5CM
XÉT TAM GIÁC AMB VUÔNG TẠI M ;ÁP DỤNG ĐL PYTAGO TA CÓ
MA^2+MB^2=AB^2
=>AM^2=AB^2-BM^2
=>AM^2=13^2-10^2
=>AM^2=69
=>AM=\(\sqrt{69}\)
B,
a) Ta có: AD= AE
=> \(\Delta ADE\) cân tại A
=>\(\widehat{D}\)=\(\widehat{E}\) =( 180 độ - \(\widehat{A}\)): 2
Lại có : AB= AC
=>\(\Delta ABC\) cân tại A
Tương tự, chứng minh: \(\widehat{B}\)=\(\widehat{C}\)=( 180 độ -\(\widehat{A}\)):2
Khi đó:\(\widehat{D}\) =\(\widehat{B}\)
Mà hai góc ở vị trí đồng vị
=> DE//BC
Bài này không quá khó !nguyen thi thanh ngan
Phiền đợi tôi !