Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x+5\right)}+1=\sqrt{x+5}+\sqrt{x+2}\\ \)
\(a+b-ab=1\)\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\orbr{\begin{cases}a=1\Rightarrow\sqrt{x+2}=1\Rightarrow x=-1\\b=1\Rightarrow\sqrt{x+5}=1\Rightarrow x=-4\end{cases}}\)
b)
\(-\left(x+3\right)^2=\left(3x+10\right)-2\sqrt{3x+10}+1=\left(\sqrt{3x+10}-1\right)^2\)
Nghiệm duy nhất có thể x+3=0
với x=-3 có VP=0
=> x=-3 là nghiệm duy nhất
a/ \(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
Điều kiện: \(\left[\begin{matrix}x\le-2\\x>1\end{matrix}\right.\)
Xét \(x\le-2\) thì ta có
\(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-4\sqrt{\left(x-1\right)\left(x+2\right)}=12\)
Đặt \(\sqrt{\left(x-1\right)\left(x+2\right)}=a\left(a\ge0\right)\) thì pt thành
\(a^2-4a-12=0\)
\(\Leftrightarrow\left[\begin{matrix}a=-2\left(l\right)\\a=6\end{matrix}\right.\)
\(\Rightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=6\)
\(\Leftrightarrow x^2+x-38=0\)
\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{2}+\frac{3\sqrt{17}}{2}\left(l\right)\\x=-\frac{1}{2}-\frac{3\sqrt{17}}{2}\end{matrix}\right.\)
Trường hợp x > 1 làm tương tự nhé
a)\(ĐKXĐ:\hept{\begin{cases}x>3\\x\le-1\end{cases}}\)
TH1: \(x-3>0\)
\(\left(x-3\right)\left(x+1\right)+4.\frac{x-3}{\sqrt{x-3}}\sqrt{x+1}=-3\)
\(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Đặt \(t=\sqrt{\left(x-3\right)\left(x+1\right)}\left(t\ge0\right)\)
Phương trình trở thành:
\(t^2+4t+3=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}}\)(ktm)=> Vô Nghiệm
TH2: \(x-3< 0\)
\(\left(x-3\right)\left(x+1\right)-4.\frac{3-x}{\sqrt{3-x}}\sqrt{-x-1}=-3\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Tự làm tiếp nhé
b)Nhân chéo chuyển vế rút gọn ta được:
\(x^3-2x^2+3x-2=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2\right)=0\)
\(\Rightarrow x=1\)
Ai da! Hóa ra anh học lớp 9
moi hoc lop 6 thoi