Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
Điều kiện: \(\left[\begin{matrix}x\le-2\\x>1\end{matrix}\right.\)
Xét \(x\le-2\) thì ta có
\(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-4\sqrt{\left(x-1\right)\left(x+2\right)}=12\)
Đặt \(\sqrt{\left(x-1\right)\left(x+2\right)}=a\left(a\ge0\right)\) thì pt thành
\(a^2-4a-12=0\)
\(\Leftrightarrow\left[\begin{matrix}a=-2\left(l\right)\\a=6\end{matrix}\right.\)
\(\Rightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=6\)
\(\Leftrightarrow x^2+x-38=0\)
\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{2}+\frac{3\sqrt{17}}{2}\left(l\right)\\x=-\frac{1}{2}-\frac{3\sqrt{17}}{2}\end{matrix}\right.\)
Trường hợp x > 1 làm tương tự nhé
\(\left[\frac{x}{2}\right]+\left[\frac{x}{3}\right]=x\)=> x nguyên => x có thể có các dạng sau: 6k ; 6k + 1; 6k + 2; 6k +3 ; 6k + 4; 6k + 5 ( k nguyên)
+) Nếu x = 6k
PT <=> \(\left[\frac{6k}{2}\right]+\left[\frac{6k}{3}\right]=6k\) => \(\left[3k\right]+\left[2k\right]=6k\) => 3k + 2k = 6k => 5k = 6k => k = 0 => x = 0
+) Nếu x = 6k + 1
PT <=> \(\left[3k+0,5\right]+\left[2k+\frac{1}{3}\right]=6k+1\)<=> 3k + 2k = 6k + 1 <=> k = - 1 => x = -5
+) Nếu x = 6k + 2
PT <=> \(\left[3k+1\right]+\left[2k+\frac{2}{3}\right]=6k+2\) <=> 3k + 1 + 2k = 6k + 2 <=> k = -1 => x= -4
+) Nếu x = 6k + 3
PT <=> \(\left[3k+1,5\right]+\left[2k+1\right]=6k+3\) <=> 3k + 1 + 2k + 1 = 6k + 3 <=> k = -1 => x = -3
+) Nếu x = 6k + 4
PT <=> \(\left[3k+2\right]+\left[2k+\frac{4}{3}\right]=6k+4\) <=> 3k + 2 + 2k + 1 = 6k + 4 <=> k = -1 => x = -2
+) Nếu x = 6k + 5
PT <=> \(\left[3k+2,5\right]+\left[2k+\frac{5}{3}\right]=6k+5\) <=> 3k + 2 + 2k + 1 = 6k + 5 <=> k = -2 => x = -7
Vậy x \(\in\) {0; -5;-4;-3;-2;-7}
a)
\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x+5\right)}+1=\sqrt{x+5}+\sqrt{x+2}\\ \)
\(a+b-ab=1\)\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\orbr{\begin{cases}a=1\Rightarrow\sqrt{x+2}=1\Rightarrow x=-1\\b=1\Rightarrow\sqrt{x+5}=1\Rightarrow x=-4\end{cases}}\)
b)
\(-\left(x+3\right)^2=\left(3x+10\right)-2\sqrt{3x+10}+1=\left(\sqrt{3x+10}-1\right)^2\)
Nghiệm duy nhất có thể x+3=0
với x=-3 có VP=0
=> x=-3 là nghiệm duy nhất
a)\(ĐKXĐ:\hept{\begin{cases}x>3\\x\le-1\end{cases}}\)
TH1: \(x-3>0\)
\(\left(x-3\right)\left(x+1\right)+4.\frac{x-3}{\sqrt{x-3}}\sqrt{x+1}=-3\)
\(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Đặt \(t=\sqrt{\left(x-3\right)\left(x+1\right)}\left(t\ge0\right)\)
Phương trình trở thành:
\(t^2+4t+3=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}}\)(ktm)=> Vô Nghiệm
TH2: \(x-3< 0\)
\(\left(x-3\right)\left(x+1\right)-4.\frac{3-x}{\sqrt{3-x}}\sqrt{-x-1}=-3\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Tự làm tiếp nhé
b)Nhân chéo chuyển vế rút gọn ta được:
\(x^3-2x^2+3x-2=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2\right)=0\)
\(\Rightarrow x=1\)
Dưới lớp 10 ko có cách nào để giải dạng này (hoặc nếu sử dụng chia trường hợp để giải thì sẽ mất vài trang giấy, không ai làm thế hết)
Ai da! Hóa ra anh học lớp 9
moi hoc lop 6 thoi