K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

\(x^3-6x^2-19x+84=0\)

\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)-\left(28x-84\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)-28\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x-28\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2-3x-28=0\end{cases}}\)

Ta có :  \(x^2-3x-28=0\)

\(\Leftrightarrow\left(x^2-7x\right)+\left(4x-28\right)=0\)

\(\Leftrightarrow x\left(x-7\right)+4\left(x-7\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)

Vậy phương trình có tập nghiệm  \(S=\left\{3;-4;7\right\}\)

a) Ta có: \(x^3-9x^2+19x-11=0\)

\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)

\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}+4\\x=-\sqrt{5}+4\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{5}+4;-\sqrt{5}+4\right\}\)

25 tháng 11 2016

a)\(6x^2+5x-6=0\)

\(\Leftrightarrow6x^2-4x+9x-6=0\)

\(\Leftrightarrow2x\left(3x-2\right)+3\left(3x-2\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)

b)\(6x^2-13x+6=0\)

\(\Leftrightarrow6x^2-4x-9x+6=0\)

\(\Leftrightarrow2x\left(3x-2\right)-3\left(3x-2\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)

c)\(10x^2-13x-3=0\)

\(\Leftrightarrow10x^2-15x+2x-3=0\)

\(\Leftrightarrow5x\left(2x-3\right)+\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\5x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{1}{5}\end{array}\right.\)

d)\(20x^2+19x-3=0\)

\(\Delta=19^2-\left(-4\left(20.3\right)\right)=601\)

\(\Rightarrow x_{1,2}=\frac{-19\pm\sqrt{601}}{40}\)

e)\(3x^2-x+6=0\)

\(\Delta=\left(-1\right)^2-4\left(3.6\right)=-71< 0\)

Suy ra vô nghiệm

26 tháng 11 2016

ơn pạn nhìu nha

23 tháng 5 2016

A=\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)\(\Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x-3\right)\left(x+3\right)\left(x^2+1\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\) ( với \(x^4-8x^2-9=x^4-9x^2+x^2-9=x^2\left(x^2-9\right)+\left(x^2-9\right)=\left(x^2-9\right)\left(x^2+1\right)=\left(x-3\right)\left(x+3\right)\left(x^2+1\right)\)  

A= \(\frac{13-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}-\frac{2}{x-3}=0\) \(\Leftrightarrow\frac{10-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x-3}=0\) \(\Leftrightarrow\left(10x-30\right)\left(x-3\right)+6-2\left(x+3\right)=0\Leftrightarrow-x^2+11x-30=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=5\end{array}\right.\)

12 tháng 7 2023

Mày nhìn cái chóa j

30 tháng 10 2019

a) \(2x^2+3x-8=0\)

Ta có: \(\Delta=3^2+4.2.8=73\)

pt có 2 nghiệm

\(x_1=\frac{-3+\sqrt{73}}{4}\);\(x_1=\frac{-3-\sqrt{73}}{4}\)

d) \(\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)

Đặt \(x^2+2x=t\)

\(pt\Leftrightarrow t^2-2t-3=0\)

Ta có: \(\Delta=2^2+4.3=16,\sqrt{\Delta}=4\)

pt trên có 2 nghiệm

\(x_1=\frac{2+4}{2}=3;x_2=\frac{2-4}{2}=-1\)

\(\Rightarrow\orbr{\begin{cases}x^2+2x=3\\x^2+2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{cases}}\)

\(\Rightarrow x\in\left\{-3;-1;1\right\}\)

30 tháng 10 2019

c) \(x^4+8x^3+19x^2+12x=0\)

\(\Leftrightarrow x^4+4x^3+4x^3+16x^2+3x^2+12x=0\)

\(\Leftrightarrow\left(x^4+4x^3+3x^2\right)+\left(4x^3+16x^2+12x\right)=0\)

\(\Leftrightarrow x\left(x^3+4x^2+3x\right)+4\left(x^3+4x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+4x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+x^2+3x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^2+3x\right)\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow x\in\left\{0;-1;-3;-4\right\}\)

26 tháng 10 2015

bạn phải phân tích đa thức thành nhân tử để hạ bậc. Một mẹo mình mách bạn thế này . bạn tìm một giá trị của x thỏa mãn thì dựa vào đó đó phân tich. Thông thường giá trị đó là ước của hằng số trong vế trái ví dụ câu a bạn thay ước của 12. mình thấy -1 thỏa mãn vậy khi phân tích đa thức thành nhân tử chắc chắn sẽ xuất hiện nhân tử là x+1 và dựa vào đó mình phân tích như sau:

x3-6x2+5x+12=0

<=> x3+x2-7x2-7x+12x+12=0

<=> (x3+x2)-(7x2+7x)+(12x+12)=0

<=> x2(x+1​)-7x(x+1​)+12(x+1​)=0

<=> (x+1)(x2-7x+12)=0

Phân tích tiếp nhóm x2-7x+12 = x2-3x-4x+12 = x(x-3)-4(x-3) = (x-3)(x-4)

vậy phương trình tương đương

<=> (x+1)(x-3)(x-4) = 0

đến đây dễ dàng suy ra x = -1; 3; 4

Các câu còn lại tương tự bạn tự làm vì quá nhiều mình không gõ được

Bài 2: 

a: \(x^2-25+3\left(x-5\right)^2=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\left(x-5\right)\left(3x-15\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5+3x-15\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(4x-10\right)=0\)

hay \(x\in\left\{5;\dfrac{5}{2}\right\}\)

b: \(x^3-3x^2+3x=1\)

\(\Leftrightarrow x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

=>x-1=0

hay x=1

23 tháng 5 2016

ĐK: \(x\ne-3,3,-2\)

Ta có: \(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{x^2+5x+6}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-9x^2+x^2-9}-\frac{3x+6}{x^2+3x+2x+6}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^2.\left(x^2-9\right)+\left(x^2-9\right)}-\frac{3x+6}{x.\left(x+3\right)+2.\left(x+3\right)}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6.\left(x^2+1\right)}{\left(x^2+1\right).\left(x^2-9\right)}-\frac{3.\left(x+2\right)}{\left(x+2\right).\left(x+3\right)}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6}{x^2-9}-\frac{3}{x+3}-\frac{2}{x-3}=0\)

=>\(\left(\frac{13-x}{x+3}-\frac{3}{x+3}\right)+\left(\frac{6}{x^2-9}-\frac{2}{x-3}\right)=0\)

=>\(\frac{13-x-3}{x+3}+\left[\frac{6}{x^2-9}-\frac{2.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\right]=0\)

=>\(\frac{10-x}{x+3}+\left[\frac{6}{x^2-9}-\frac{2x+6}{x^2-9}\right]=0\)

=>\(\frac{10-x}{x+3}+\frac{6-2x-6}{x^2-9}=0\)

=>\(\frac{\left(10-x\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}+\frac{-2x}{x^2-9}=0\)

=>\(\frac{13x-x^2-30}{x^2-9}-\frac{2x}{x^2-9}=0\)

=>\(\frac{13x-x^2-30-2x}{x^2-9}=0\)

=>\(\frac{11x-x^2-30}{x^2-9}=0\)

Vì \(x\ne-3,3=>x^2\ne0\)

=>11x-x2-30=0

=>6x-30-x2+5x=0

=>6.(x-5)-x.(x-5)=0

=>(6-x).(x-5)=0

=>6-x=0=>x=6

hoặc x-5=0=>x=5

Vậy tập nghiệm của phương trình S=6; 5

23 tháng 5 2016

Em ước gì được ên lớp 8 để giúp anh  Hoàng Phúc