K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2015

x2 - 2x + 1 = 0

=> x2 - 2x = - 1

=>  x2 bé hơn 2x là 1 đơn vị.

Bạn tự tìm tiếp nha ! 

15 tháng 9 2016

đề j v

18 tháng 3 2018

https://olm.vn/hoi-dap/question/413076.html

28 tháng 4 2023

\(Đk:x\ge\dfrac{3}{2}\Rightarrow x>0\)

\(x^3-4x^2+5x-1-\sqrt{2x-3}=0\)

\(\Leftrightarrow2x^3-8x^2+10x-2-2\sqrt{2x-3}=0\)

\(\Leftrightarrow\left(2x^3-8x^2+8x\right)+\left[\left(2x-3\right)-2\sqrt{2x-3}+1\right]=0\)

\(\Leftrightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2\ge0\left(x>0\right)\\\left(\sqrt{2x-3}-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2\ge0\)

Do đó: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2=0\\\left(\sqrt{2x-3}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=2\)

Thử lại ta có x=2 là nghiệm duy nhất của phương trình đã cho.

 

x^3-4x^2+5x-1-căn 2x-3=0

=>\(x^3-4x^2+5x-2-\left(\sqrt{2x-3}-1\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2-\dfrac{2x-3-1}{\sqrt{2x-3}+1}=0\)

=>\(\left(x-2\right)\left[\left(x-1\right)\left(x-2\right)-\dfrac{2}{\sqrt{2x-3}+1}\right]=0\)

=>x-2=0

=>x=2

27 tháng 3 2018

\(2x^3-7x^2+4x+1=0\)

\(\Leftrightarrow2x^2\left(x-1\right)-5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-5x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x^2-5x-1=0\end{cases}}\) Đến đây tự làm tiếp nha

6 tháng 10 2017

\(x^4-2x+\dfrac{1}{2}=0\)

\(\Leftrightarrow4x^4-8x+2=0\)

\(\Leftrightarrow\left(4x^4+8x^2+4\right)-\left(8x^2+8x+2\right)=0\)

\(\Leftrightarrow4\left(x^2+1\right)^2-\left(2\sqrt{2}x+\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2\sqrt{2}x+2-\sqrt{2}\right)\left(2x^2+2\sqrt{2}x+2+\sqrt{2}\right)=0\)

\(\Leftrightarrow2x^2-2\sqrt{2}x+2-\sqrt{2}=0\)

\(2x^2+2\sqrt{2}x+2+\sqrt{2}\ge1+\sqrt{2}>0\)

\(\Delta=\left(-2\sqrt{2}\right)^2-4\times2\times\left(2-\sqrt{2}\right)=-8+8\sqrt{2}>0\)

Suy ra pt có hai no phân biệt:

\(x_1=\dfrac{-\left(-2\sqrt{2}\right)+\sqrt{-8+8\sqrt{2}}}{2\times2}=\dfrac{\sqrt{2}+\sqrt{-2+2\sqrt{2}}}{2}\)

\(x_1=\dfrac{-\left(-2\sqrt{2}\right)-\sqrt{-8+8\sqrt{2}}}{2\times2}=\dfrac{\sqrt{2}-\sqrt{-2+2\sqrt{2}}}{2}\)

Vậy \(S=\left\{\dfrac{\sqrt{2}-\sqrt{-2+2\sqrt{2}}}{2};\dfrac{\sqrt{2}+\sqrt{-2+2\sqrt{2}}}{2}\right\}\)

a: Khi m=2 thì pt sẽ là \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-2m\right)\)

\(=4m^2-8m+4-4m^2+8m=4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(x_1+x_2=x_1\cdot x_2\)

\(\Leftrightarrow m^2-2m=2\left(m-1\right)=2m-2\)

\(\Leftrightarrow m^2-4m+2=0\)

\(\Leftrightarrow\left(m-2\right)^2=2\)

hay \(m\in\left\{\sqrt{2}+2;-\sqrt{2}+2\right\}\)

1 tháng 8 2019
https://i.imgur.com/8drN5TF.jpg