K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

ĐK: \(x-1\ge0;\text{ }x-2\sqrt{x-1}\ge0;\text{ }x+3-4\sqrt{x-1}\ge0\)

\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1-4\sqrt{x-1}+4}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}-2\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\left|2-\sqrt{x-1}\right|=1\)

Mà: \(\left|\sqrt{x-1}-1\right|+\left|2-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-1+2-\sqrt{x-1}\right|=1\)

Dấu "=" xảy ra khi \(\left(\sqrt{x-1}-1\right)\left(2-\sqrt{x-1}\right)\ge0\Leftrightarrow1\le\sqrt{x-1}\le2\)

\(\Leftrightarrow2\le x\le5\)

Kết luận tập nghiệm của phương trình là: \(S=\left[2;5\right]\)

20 tháng 7 2015

Toán này lớp 8 thôi :))

18 tháng 10 2017

các bạn ơi giúp mình với

23 tháng 11 2015

tui giải khác không biết phải không =]]

=>4 \(\left(\sqrt{x+1}\right)^2\)-  4 \(\left(\sqrt{1-x}\right)^2\)+(3 - x) = 3\(\left(\sqrt{1-x}\right)^2\)

= >4(x+1) -4(1-x) + (3-x) = 3(1-x)

=>4x +4 -4 +4x +3 -x = 3 - 3x

=>10x = 0

=> x=0 => pt VN

16 tháng 2 2017

\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\\ \)(1)

\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)

\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0\Rightarrow!2x+1!=2x+1\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)

\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)

\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)

\(\left\{\begin{matrix}2x+1=0\\-x^2=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=-\frac{1}{2}\\x=0\end{matrix}\right.\)

16 tháng 2 2017

\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)

\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[2\left(x+\frac{1}{2}\right)\left(x^2+1\right)\right]\)

\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)}=\left(x+\frac{1}{2}\right)\left(x^2+1\right)\)

\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x-\frac{1}{2}+1\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-1-x^2+1\right)=0\)

\(\Leftrightarrow-x^2\left(x+\frac{1}{2}\right)=0\)\(\Leftrightarrow\left[\begin{matrix}-x^2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)