Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ:............
PT \(\Leftrightarrow 2x^2+14x-2x\sqrt{x^2+8x}+8x-14\sqrt{x^2+8x}+24=0\)
\(\Leftrightarrow (x^2+8x)+(x^2+14x+49)-2(x+7)\sqrt{x^2+8x}-25=0\)
\(\Leftrightarrow (x^2+8x)+(x+7)^2-2(x+7)\sqrt{x^2+8x}-25=0\)
\(\Leftrightarrow (\sqrt{x^2+8x}-x-7)^2-25=0\)
\(\Leftrightarrow (\sqrt{x^2+8x}-x-12)(\sqrt{x^2+8x}-x-2)=0\)
Nếu \(\sqrt{x^2+8x}-x-12=0\)
\(\Leftrightarrow \sqrt{x^2+8x}=x+12\Rightarrow \left\{\begin{matrix} x+12\geq 0\\ x^2+8x=(x+12)^2\end{matrix}\right.\)
\(\Rightarrow x=-9\) (thỏa mãn)
Nếu \(\sqrt{x^2+8x}-x-2=0\Leftrightarrow \sqrt{x^2+8x}=x+2\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ x^2+8x=(x+2)^2\end{matrix}\right.\Rightarrow x=1\) (thỏa mãn)
Vậy.........
\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)
Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no
(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))
=> x - 2 = 0
<=> x = 2 (nhận)
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)
TH1:
x + 3 = 0
<=> x = - 3 (loại)
TH2:
\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)
\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)
\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)
Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no
=> x - 2 = 0
<=> x = 2 (nhận)
~ ~ ~
Vậy x = 2
\(ĐK:x\le12\)
Đặt \(\hept{\begin{cases}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\end{cases}\left(b\ge0\right)\Rightarrow}a^3+b^2=36\)
PT trở thành a+b=6
Ta có hệ phương trình \(\hept{\begin{cases}a+b=6\\a^3+b^2=36\end{cases}\Leftrightarrow}\hept{\begin{cases}b=6-a\\a^3+a^2-12a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=6-a\\a\left(a-3\right)\left(a+4\right)=0\end{cases}}\)
Đến đây đơn giản rồi nhé
pt<=>căn((x-1/2)^2+75/4)+căn(2(x-1/2)^2+3(x+2)^2)+căn((x-1/2)^2+3(2x+3/2)^2)>=3*căn3(x+2)
dấu = xãy ra khi x=1/2
c) \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)
\(\Leftrightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}=x\)
\(\Leftrightarrow x^2+6+4\left(x^2-1\right)+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=x^2\)
\(\Leftrightarrow6+4x^2-4+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=0\)
\(\Leftrightarrow4x^2+2+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=0\)
\(\Leftrightarrow2x^2+2\sqrt{\left(x^2+6\right)\left(x^2-1\right)}+1=0\)
Dễ thấy \(VT>0\forall x\)
Do đó pt vô nghiệm
Lời giải:
a)
ĐK: \(0\leq x\leq 1\)
PT \(\Leftrightarrow \sqrt{x+\sqrt{1-x}}=1-\sqrt{x}\)
\(\Rightarrow x+\sqrt{1-x}=1+x-2\sqrt{x}\) (bình phương 2 vế)
\(\Leftrightarrow \sqrt{1-x}-1+2\sqrt{x}=0\)
\(\Leftrightarrow \frac{-x}{\sqrt{1-x}+1}+2\sqrt{x}=0\)
\(\Leftrightarrow \sqrt{x}(2-\frac{\sqrt{x}}{\sqrt{1-x}+1})=0\)
Ta thấy \(\sqrt{1-x}+1\geq 1\Rightarrow \frac{\sqrt{x}}{\sqrt{1-x}+1}\leq \sqrt{x}\leq 1< 2\) với mọi $0\leq x\leq 1$
\(\Rightarrow 2-\frac{\sqrt{x}}{\sqrt{1-x}+1}>0\Rightarrow 2-\frac{\sqrt{x}}{\sqrt{1-x}+1}\neq 0\)
Do đó $\sqrt{x}=0\Leftrightarrow x=0$ là nghiệm duy nhất
b)
ĐK: \(1 \leq x\leq \frac{1+\sqrt{5}}{2}\) hoặc \(0\geq x\geq \frac{1-\sqrt{5}}{2}\)
PT \(\Rightarrow \left\{\begin{matrix} \sqrt{x}-1\geq 0\\ 1-\sqrt{x^2-x}=x-2\sqrt{x}+1\end{matrix}\right.\) (bình phương 2 vế)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 1(1)\\ x+\sqrt{x^2-x}-2\sqrt{x}=0(2)\end{matrix}\right.\)
(1) kết hợp với ĐKXĐ suy ra \(1\leq x\leq \frac{1+\sqrt{5}}{2}(*)\)
(2) \(\Leftrightarrow \sqrt{x}(\sqrt{x}+\sqrt{x-1}-2)=0\)
Từ $(*)$ suy ra $x\neq 0$. Do đó \(\sqrt{x}+\sqrt{x-1}-2=0\)
\(\Leftrightarrow \sqrt{x-1}=2-\sqrt{x}\)
\(\Rightarrow x-1=4+x-4\sqrt{x}\) (bình phương)
\(\Leftrightarrow 4\sqrt{x}=5\Rightarrow x=\frac{25}{16}\) (thỏa mãn $(*)$)
Vậy......
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!