Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)
\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)
d.
\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)
\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)
a.
\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)
\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
b.
\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)
3.3 d)
\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)
3.4 a)
\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)
Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)
Ta được:
\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)
Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)và \(sin\alpha=\dfrac{2}{\sqrt{5}}\)
Phương trình tương đương:
\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
\(1+\sin\dfrac{x}{2}\sin x-\cos\dfrac{x}{2}\sin^2x=2\cos^2\left(\dfrac{\Pi}{4}-\dfrac{x}{2}\right)\)
\(\Leftrightarrow1+\sin\dfrac{x}{2}\sin x-\cos\dfrac{x}{2}\sin^2x=2\left(\dfrac{\sqrt{2}}{2}\cos\dfrac{x}{2}+\dfrac{\sqrt{2}}{2}\sin\dfrac{x}{2}\right)^2\)
\(\Leftrightarrow1+2\sin^2\dfrac{x}{2}\cos\dfrac{x}{2}-\cos\dfrac{x}{2}\left(2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\right)^2=1+2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\)
\(\Leftrightarrow2\sin^2\dfrac{x}{2}\cos\dfrac{x}{2}-4\cos^3\dfrac{x}{2}\sin^2\dfrac{x}{2}-2\sin\dfrac{x}{2}\cos\dfrac{x}{2}=0\)
\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\left(\sin\dfrac{x}{2}-2\sin\dfrac{x}{2}\cos^2\dfrac{x}{2}-1\right)=0\)
\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\left(\sin\dfrac{x}{2}-2\sin\dfrac{x}{2}\left(1-\sin^2\dfrac{x}{2}\right)-1\right)=0\)
\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}.\left(\sin\dfrac{x}{2}-1\right)\left(2\sin^2\dfrac{x}{2}+2\sin\dfrac{x}{2}+1\right)=0\)
a/
\(sinx=\frac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(x\in\left(0;\pi\right)\Rightarrow\left[{}\begin{matrix}0< \frac{\pi}{6}+k2\pi< \pi\\0< \frac{5\pi}{6}+k2\pi< \pi\end{matrix}\right.\) \(\Rightarrow k=0\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{5\pi}{6}\right\}\)
b.
\(\Leftrightarrow cosx=k\pi\)
Do \(-1\le cosx\le1\Rightarrow-1\le k\pi\le1\Rightarrow k=0\)
\(\Rightarrow cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\frac{3\pi}{2}\right\}\)
a. \(sin\left(4x+\pi\right)=sin35^o\)
\(\Leftrightarrow sin\left(4x+180^o\right)=sin35^o\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+180^o=35^o+k.360^o,k\in Z\\4x+180^o=180^o-35^o+k.360^o,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-145^o+k.360^o,k\in Z\\4x=-35^o+k.360^o,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{145^o}{4}+k.90,k\in Z\\x=-\frac{35^o}{4}+k.90^o,k\in Z\end{matrix}\right.\)
Vậy.....
b.\(sin4x=\frac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=arcsin\left(\frac{1}{5}\right)+k2\pi,k\in Z\\4x=\pi-arcsin\left(\frac{1}{5}\right)+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{arcsin\left(\frac{1}{5}\right)}{4}+\frac{k\pi}{2},k\in Z\\x=\frac{\pi}{4}-\frac{arcsin\left(\frac{1}{5}\right)}{4}+\frac{k\pi}{2},k\in Z\end{matrix}\right.\)
Vậy....
c. \(sin\left(x+\frac{8\pi}{7}\right)=3\)
Ta có: \(-1\le sinx\le1\)
\(\Rightarrow-1\le sin\left(3x+\frac{8\pi}{7}\right)\le1\)
Do đó phương trình trên vô nghiệm
d. \(sinx=-7\)
Ta có: \(-1\le sinx\le1\)
Do đó phương trình trên vô nghiệm
e. \(sin\left(3x+\pi\right)=sin\left(2x-3\pi\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\pi=2x-3\pi+k2\pi,k\in Z\\3x+\pi=\pi-2x+3\pi+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\pi+k2\pi,k\in Z\\5x=3\pi+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\pi+k2\pi,k\in Z\\x=\frac{3}{5}\pi+\frac{k2\pi}{5},k\in Z\end{matrix}\right.\)
Vậy......
f. \(sin\left(4x-\frac{\pi}{2}\right)=sin\left(\pi-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{2}=\pi-2x+k2\pi,k\in Z\\4x-\frac{\pi}{2}=\pi-\pi+2x+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=\frac{3}{2}\pi+k2\pi,k\in Z\\2x=\frac{\pi}{2}+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{3},k\in Z\\x=\frac{\pi}{4}+k\pi,k\in Z\end{matrix}\right.\)
Vậy......
\(\sin x=\sin\dfrac{\pi}{5}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{5}+k2\pi\\x=\pi-\dfrac{\pi}{5}+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{5}+k2\pi\\x=\dfrac{4\pi}{5}+k2\pi\end{matrix}\right.\left(k\in Z\right)\)
Ta có: \(sinx=sin\dfrac{\pi}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{5}+k2\pi\\x=\pi-\dfrac{\pi}{5}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{5}+k2\pi\\x=\dfrac{4\pi}{5}+k2\pi\end{matrix}\right.\)