K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

\(\left(x^2-x+1\right)\left(x^2+4x+1\right)=6x^2\)

Đặt \(x^2-x+1=t\left(t\ge\dfrac{3}{4}\right)\)

\(\Rightarrow t\left(t+5x\right)=6x^2\)

\(\Leftrightarrow t^2+5xt-6x^2=0\)

\(\Leftrightarrow\left(t+6x\right)\left(t-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-6x\\t=x\end{matrix}\right.\)

\(\odot\) TH1: \(t=-6x\)

\(\Rightarrow x^2-x+1=-6x\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{21}}{2}\\x=\dfrac{-5-\sqrt{21}}{2}\end{matrix}\right.\)

\(\odot\) TH2: \(t=x\)

\(\Rightarrow x^2-x+1=x\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow x=1\)

Vậy phương trình đã cho có tập nghiệm \(S=\left\{1;\dfrac{-5+\sqrt{21}}{2};\dfrac{-5-\sqrt{21}}{2}\right\}\)

NV
26 tháng 11 2021

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

NV
26 tháng 11 2021

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
14 tháng 1 2021

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

NV
14 tháng 1 2021

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

4 tháng 9 2016

Ptrình này vô nghiệm bn ạ

1 tháng 3 2020

đặt \(\sqrt{x^2+1}=a\left(a\ge0\right)\)

\(\Leftrightarrow a^2=x^2+1\)

khi đó ta có:

\(a^2+4x=\left(x+4\right)a\) \(\Leftrightarrow a^2-4a+4x-ax=0\)

\(\Leftrightarrow\left(a-x\right)\left(a-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\a=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x\\\sqrt{x^2+1}=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2\left(đk:x\ge0\right)\\x^2+1=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0=1\left(vl\right)\\x=\pm\sqrt{15}\end{matrix}\right.\)

vậy x=15 hoặc x=-15 là nghiệm của pt

1 tháng 3 2020

ĐKXĐ : \(x^2+1\ge0\) ( luôn đúng \(\forall x\) )

- Ta có : \(x^2+4x+1=\left(x+4\right)\sqrt{x^2+1}\)

- Đặt \(a=\sqrt{x^2+1}\left(a\ge0\right)\) ta được phương trình :

\(a^2+4x=a\left(x+4\right)\)

=> \(a^2+4x=ax+4a\)

=> \(a^2+4x-ax-4a=0\)

=> \(a\left(a-x\right)-4\left(a-x\right)\)

=> \(\left(a-x\right)\left(a-4\right)=0\)

=> \(\left[{}\begin{matrix}a-x=0\\a-4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=x\\a=4\end{matrix}\right.\) ( TM )

- Thay lại \(a=\sqrt{x^2+1}\) vào phương trình trên ta được :

=> \(\left[{}\begin{matrix}\sqrt{x^2+1}=x\\\sqrt{x^2+1}=4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+1=x^2\\x^2+1=16\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}0=1\left(VL\right)\\x^2=16-1=15\end{matrix}\right.\)

=> \(x=\pm\sqrt{15}\left(TM\right)\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{-\sqrt{15},\sqrt{15}\right\}\)