K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

\(ĐKXĐ:x\ne\frac{5-\sqrt{13}}{2};x\ne\frac{5+\sqrt{13}}{2}\)

\(\frac{4x}{x^2+x+3}+\frac{5x}{x^2-5x+3}=-\frac{3}{2}\)

*) Xét x = 0 thì \(\frac{4x}{x^2+x+3}+\frac{5x}{x^2-5x+3}=0\)(Loại)

*) Xét \(x\ne0\)thì phương trình tương đương \(\frac{4}{x+\frac{3}{x}+1}+\frac{5}{x+\frac{3}{x}-5}=-\frac{3}{2}\)

Đặt \(x+\frac{3}{x}=t\)thì phương trình trở thành \(\frac{4}{t+1}+\frac{5}{t-5}=-\frac{3}{2}\)

\(\Leftrightarrow\frac{4t-20+5t+5}{\left(t+1\right)\left(t-5\right)}=-\frac{3}{2}\Leftrightarrow\frac{9t-15}{t^2-4t-5}=-\frac{3}{2}\)

\(\Leftrightarrow18t-30=-3t^2+12t+15\Leftrightarrow3t^2+6t-45=0\)

\(\Leftrightarrow3\left(t-3\right)\left(t+5\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-5\end{cases}}\)

+) t = 3 thì \(x+\frac{3}{x}=3\Leftrightarrow\frac{x^2+3}{x}=3\Leftrightarrow x^2-3x+3=0\)

Mà \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}>0\forall x\)nên loại trường hợp t = 3

+) t = -5 thì \(x+\frac{3}{x}=-5\Leftrightarrow\frac{x^2+3}{x}=-5\Leftrightarrow x^2+5x+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{13}}{2}\\x=\frac{-5-\sqrt{13}}{2}\end{cases}}\)

Vậy phương trình có 2 nghiệm \(\left\{\frac{-5+\sqrt{13}}{2};\frac{-5-\sqrt{13}}{2}\right\}\)

29 tháng 7 2020

Bài làm:

đkxđ: \(x\ne\left\{\frac{5+\sqrt{13}}{2};\frac{5-\sqrt{13}}{2}\right\}\)

+ Nếu x = 0:

\(Pt\Leftrightarrow0=-\frac{3}{2}\)(vô nghiệm)

+ Nếu x khác 0:

\(Pt\Leftrightarrow\frac{4x}{x\left(x+\frac{3}{x}+1\right)}+\frac{5x}{x\left(x+\frac{3}{x}-5\right)}=-\frac{3}{2}\)

\(\Leftrightarrow\frac{4}{x+\frac{3}{x}+1}+\frac{5}{x+\frac{3}{x}-5}=-\frac{3}{2}\)

Đặt \(x+\frac{3}{x}=y\)

\(Pt\Leftrightarrow\frac{4}{y+1}+\frac{5}{y-5}=-\frac{3}{2}\)

\(\Leftrightarrow\frac{8\left(y-5\right)+10\left(y+1\right)}{2\left(y+1\right)\left(y-5\right)}=-\frac{3\left(y-5\right)\left(y+1\right)}{2\left(y+1\right)\left(y-5\right)}\)

\(\Rightarrow8y-40+10y+10=-3\left(y^2-4y-5\right)\)

\(\Leftrightarrow18y-30=-3y^2+12y+15\)

\(\Leftrightarrow3y^2+6y-45=0\)

\(\Leftrightarrow y^2+2y-15=0\)

\(\Leftrightarrow\left(y-3\right)\left(y+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-3=0\\y+5=0\end{cases}}\Leftrightarrow\Leftrightarrow\orbr{\begin{cases}y=3\\y=-5\end{cases}}\)

Nếu: \(y=3\Leftrightarrow x+\frac{3}{x}=3\Leftrightarrow\frac{x^2+3}{x}=3\Leftrightarrow x^2+3=3x\)

\(\Leftrightarrow x^2-3x+3=0\)

\(\Leftrightarrow\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-\frac{3}{4}\)(vô lý)

=> không tồn tại x thỏa mãn

Nếu: \(y=-5\Leftrightarrow x+\frac{3}{x}=-5\Leftrightarrow\frac{x^2+3}{x}=-5\Leftrightarrow x^2+3=-5x\)

\(\Leftrightarrow x^2+5x+3=0\)

\(\Leftrightarrow\left(x^2+5x+\frac{25}{4}\right)-\frac{13}{4}=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}-\frac{\sqrt{13}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{13}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5-\sqrt{13}}{2}=0\\x+\frac{5+\sqrt{13}}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-5}{2}\\x=\frac{-5-\sqrt{13}}{2}\end{cases}}\)(thỏa mãn)

Vậy tập nghiệm của PT \(S=\left\{\frac{-5-\sqrt{13}}{2};\frac{\sqrt{13}-5}{2}\right\}\)

d: =>4x+6=15x-12

=>4x-15x=-12-6=-18

=>-11x=-18

hay x=18/11

e: =>\(45x+27=12+24x\)

=>21x=-15

hay x=-5/7

f: =>35x-5=96-6x

=>41x=101

hay x=101/41

g: =>3(x-3)=90-5(1-2x)

=>3x-9=90-5+10x

=>3x-9=10x+85

=>-7x=94

hay x=-94/7

24 tháng 1 2022

làm rõ ra giúp với ạ, ghi v k hỉu j hết ;-;

23 tháng 5 2016

A=\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)\(\Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x-3\right)\left(x+3\right)\left(x^2+1\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\) ( với \(x^4-8x^2-9=x^4-9x^2+x^2-9=x^2\left(x^2-9\right)+\left(x^2-9\right)=\left(x^2-9\right)\left(x^2+1\right)=\left(x-3\right)\left(x+3\right)\left(x^2+1\right)\)  

A= \(\frac{13-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}-\frac{2}{x-3}=0\) \(\Leftrightarrow\frac{10-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x-3}=0\) \(\Leftrightarrow\left(10x-30\right)\left(x-3\right)+6-2\left(x+3\right)=0\Leftrightarrow-x^2+11x-30=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=5\end{array}\right.\)

12 tháng 7 2023

Mày nhìn cái chóa j

NV
29 tháng 6 2019

\(x=0\) không phải nghiệm

\(\frac{4}{x+1+\frac{3}{x}}+\frac{5}{x-5+\frac{3}{x}}=-\frac{3}{2}\)

Đặt \(x-5+\frac{3}{x}=a\)

\(\frac{4}{a+6}+\frac{5}{a}=-\frac{3}{2}\)

\(\Leftrightarrow8a+10\left(a+6\right)=-3a\left(a+6\right)\)

\(\Leftrightarrow3a^2+36a+60=0\Rightarrow\left[{}\begin{matrix}a=-2\\a=-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-5+\frac{3}{x}=-2\\x-5+\frac{3}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow...\)

11 tháng 2 2020

Giải:

a) ⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0

⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)

Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .

b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)

\(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4

⇔ 8 = 4 ( vô lí)

Vậy phương trình trên vô nghiệm.

Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!

11 tháng 2 2020

ĐKXĐ đâu?

23 tháng 5 2016

ĐK: \(x\ne-3,3,-2\)

Ta có: \(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{x^2+5x+6}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-9x^2+x^2-9}-\frac{3x+6}{x^2+3x+2x+6}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^2.\left(x^2-9\right)+\left(x^2-9\right)}-\frac{3x+6}{x.\left(x+3\right)+2.\left(x+3\right)}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6.\left(x^2+1\right)}{\left(x^2+1\right).\left(x^2-9\right)}-\frac{3.\left(x+2\right)}{\left(x+2\right).\left(x+3\right)}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6}{x^2-9}-\frac{3}{x+3}-\frac{2}{x-3}=0\)

=>\(\left(\frac{13-x}{x+3}-\frac{3}{x+3}\right)+\left(\frac{6}{x^2-9}-\frac{2}{x-3}\right)=0\)

=>\(\frac{13-x-3}{x+3}+\left[\frac{6}{x^2-9}-\frac{2.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\right]=0\)

=>\(\frac{10-x}{x+3}+\left[\frac{6}{x^2-9}-\frac{2x+6}{x^2-9}\right]=0\)

=>\(\frac{10-x}{x+3}+\frac{6-2x-6}{x^2-9}=0\)

=>\(\frac{\left(10-x\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}+\frac{-2x}{x^2-9}=0\)

=>\(\frac{13x-x^2-30}{x^2-9}-\frac{2x}{x^2-9}=0\)

=>\(\frac{13x-x^2-30-2x}{x^2-9}=0\)

=>\(\frac{11x-x^2-30}{x^2-9}=0\)

Vì \(x\ne-3,3=>x^2\ne0\)

=>11x-x2-30=0

=>6x-30-x2+5x=0

=>6.(x-5)-x.(x-5)=0

=>(6-x).(x-5)=0

=>6-x=0=>x=6

hoặc x-5=0=>x=5

Vậy tập nghiệm của phương trình S=6; 5

23 tháng 5 2016

Em ước gì được ên lớp 8 để giúp anh  Hoàng Phúc

5 tháng 5 2020

Giải phương trình

a, 5x(x-4)-5x2 = 2 (11-x)

\(\Leftrightarrow5x^2-20x-5x^2=22-2x\)

\(\Leftrightarrow-18x=22\)

\(\Leftrightarrow x=\frac{-22}{18}\)

b, \(\frac{3}{x-3}-\frac{2}{x+3}=\frac{4x}{x^2-9}\left(x\ne\pm3\right)\)

\(\Leftrightarrow\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4x}{x^2-9}\)

\(\Rightarrow3x+9-2x+6=4x\)

\(\Leftrightarrow3x=15\)

\(\Leftrightarrow x=5\left(tm\right)\)

Kl: a,.........

b,.........

5 tháng 5 2020

tm của câu b là gì vậy bạn