\(x^2+\left(3-\sqrt{x^2+2}\right)x=1+2\sqrt{x^2+2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 6:

ĐK: $x\geq \frac{2}{3}$

Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$

PT trở thành:

$a-b=a^2-b^2$

$\Leftrightarrow (a-b)(a+b)-(a-b)=0$

$\Leftrightarrow (a-b)(a+b-1)=0$

Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)

Nếu $a+b-1=0$

$\Leftrightarrow b=1-a$

$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$

$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$

$\Leftrightarrow x+4=2\sqrt{4x+1}$

$\Rightarrow (x+4)^2=4(4x+1)$

$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$

Vậy.......

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 5:

ĐK: $x\geq -2$

PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$

Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$

Khi đó PT trở thành:
$3ab=2b^2+a^2$

$\Leftrightarrow a^2-3ab+2b^2=0$

$\Leftrightarrow a(a-b)-2b(a-b)=0$

$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$

$\Leftrightarrow x+2-(x^2-2x+4)=0$

$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)

Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$

$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$

$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)

Vậy.........

NV
14 tháng 7 2020

f/

ĐKXĐ: ...

Đặt \(\sqrt{2-x}+\sqrt{x+2}=a>0\)

\(\Rightarrow a^2=4+2\sqrt{4-x^2}\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}\)

Phương trình trở thành:

\(a+\frac{a^2-4}{2}=2\)

\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}=0\)

\(\Rightarrow4-x^2=0\Rightarrow x=\pm2\)

NV
14 tháng 7 2020

e/ ĐKXĐ: ...

Đặt \(\sqrt{x+1}+\sqrt{4-x}=a>0\)

\(\Rightarrow a^2=5+2\sqrt{\left(x+1\right)\left(4-x\right)}\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{a^2-5}{2}\)

Pt trở thành:

\(a+\frac{a^2-5}{2}=5\)

\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{4-x}=3\)

\(\Leftrightarrow5+2\sqrt{\left(x+1\right)\left(4-x\right)}=9\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=2\)

\(\Leftrightarrow\left(x+1\right)\left(4-x\right)=4\)

\(\Leftrightarrow-x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

31 tháng 10 2015

c) (d tương tự)

\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)

và \(a+2b=5\)

--> Thế

\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)

Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)

Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.

y = 0 thì x = 1 (không thỏa pt ban đầu)

Xét y khác 0. Chia cả 2 vế của (*) cho y6

\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)

Không khả quan lắm :)) bạn tự tìm cách khác nhé.

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Câu 1:

ĐK: \(x\geq -8\)

Đặt \(\sqrt{x+8}=a(a\geq 0)\) thì pt tương đương với:

\((4x+2)a=3x^2+6x+(x+8)=3x^2+6x+a^2\)

\(\Leftrightarrow 3x^2+6x+a^2-4ax-2a=0\)

\(\Leftrightarrow (4x^2-4ax+a^2)-x^2+6x-2a=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)-x^2+2x=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)+1-(x^2-2x+1)=0\)

\(\Leftrightarrow (2x-a+1)^2-(x-1)^2=0\)

\(\Leftrightarrow (x-a+2)(3x-a)=0\)

\(\bullet \)Nếu \(x-a+2=0\Leftrightarrow x+2=a\Rightarrow (x+2)^2=a^2=x+8\)

\(\Leftrightarrow x^2+3x+4=0\Rightarrow \left[\begin{matrix} x=1\\ x=-4\end{matrix}\right.\) . Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-4$ bị loại vì $x+2=a\geq 0$

\(\bullet \) Nếu \(3x-a=0\Rightarrow 3x=a\Rightarrow 9x^2=a^2=x+8\)

\(\Leftrightarrow 9x^2-x-8=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-8}{9}\end{matrix}\right.\). Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-\frac{8}{9}$ loại vì \(9x=a\geq 0\rightarrow x\geq 0\)

Vậy PT có nghiệm duy nhất $x=1$

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Câu 2:
ĐK: \(x\geq \frac{-1}{3}\)

Đặt \(\sqrt{3x+1}=a(a\geq 0)\). Khi đó pt đã cho tương đương với:

\(x^2+x+(3x+1)-2x\sqrt{3x+1}=\sqrt{3x+1}\)

\(\Leftrightarrow x^2+x+a^2-2ax=a\)

\(\Leftrightarrow (x^2+a^2-2ax)+(x-a)=0\)

\(\Leftrightarrow (x-a)^2+(x-a)=0\Leftrightarrow (x-a)(x-a+1)=0\)

\(\Rightarrow \left[\begin{matrix} x=a\\ x+1=a\end{matrix}\right.\)

Nếu \(x=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=3x+1\end{matrix}\right.\Rightarrow x=\frac{3+\sqrt{13}}{2}\) (t/m)

Nếu \(x+1=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-x=0\end{matrix}\right.\)

\(\Rightarrow x=0\) hoặc $x=1$

Vậy.........