![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐKXĐ: 1 ≥ x ≥ -1
Ta có: VT ≥ 0 = VP
Dấu "=" xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}\sqrt{1-x^2}=0\\\sqrt{1+x}=0\end{matrix}\right.\)
<=> x = -1 (TM)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
Ta có: VT ≥ 0 = VP
Dấu "=" xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}\sqrt{x^2-4}=0\\\sqrt{x^2+4x+4}=0\end{matrix}\right.\)
<=> x = -2 (TM)
c) \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
ĐKXĐ: \(\left\{{}\begin{matrix}1-x^2\ge0\\x+1\ge0\end{matrix}\right.\) \(\Rightarrow\)\(\left\{{}\begin{matrix}1\ge x^2\\x\ge-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le1\\x\ge-1\end{matrix}\right.\)
=> -1 \(\le\) x \(\le\) 1
\(\sqrt{1-x^2}+\sqrt{x+1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{x+1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(1+x\right)}.\left(\sqrt{1-x}+1\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{1+x}=0\\\sqrt{1-x}=-1\left(voli\right)\end{matrix}\right.\Rightarrow x+1=0\)
=> x = -1 ( thỏa mãn)
d) ĐKXĐ: \(x^2-4\ge0\Rightarrow x^2\ge4\)
\(\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
\(\sqrt{x^2-4}+\sqrt{\left(x+2^2\right)}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2^2\right)}=0\)
\(\Leftrightarrow\)\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+2=0\\\sqrt{x-2}=-\sqrt{x+2}\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x-2=x+2\left(voli\right)\end{matrix}\right.\)
Vậy x= -2
![](https://rs.olm.vn/images/avt/0.png?1311)
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 bạn tìm quanh quanh đây, mình thấy có bài y hệt rồi nên ko làm nữa
Bài 2 như sau:
ĐKXĐ: \(x\ge\dfrac{-1}{16}\)
\(x^2-x-20-2\left(\sqrt{16x+1}-9\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-2\dfrac{\left(\sqrt{16x+1}-9\right)\left(\sqrt{16x+1}+9\right)}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\dfrac{32\left(x-5\right)}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4-\dfrac{32}{\sqrt{16x+1}+9}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\Rightarrow x=5\\x+4-\dfrac{32}{\sqrt{16x+1}+9}=0\left(1\right)\end{matrix}\right.\)
Xét phương trình (1): ta có \(x+4\ge-\dfrac{1}{16}+4=\dfrac{63}{16}\) \(\forall x\ge-\dfrac{1}{16}\)
\(\sqrt{16x+1}+9\ge9\Rightarrow\dfrac{32}{\sqrt{16x+1}+9}\le\dfrac{32}{9}\) \(\forall x\ge-\dfrac{1}{16}\)
Mà \(\dfrac{63}{16}-\dfrac{32}{9}=\dfrac{55}{144}>0\) \(\Rightarrow x+4-\dfrac{32}{\sqrt{16x+1}+9}>0\) \(\forall x\ge-\dfrac{1}{16}\)
\(\Rightarrow\) pt (1) vô nghiệm
Vậy pt đã cho có nghiệm duy nhất \(x=5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2\left(x^2+2\right)=5\sqrt{x^3+1}\left(đk:x\ge-1\right)\)
\(\Leftrightarrow2\left[\left(x^2-x+1\right)+\left(x+1\right)\right]=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)
Đặt \(\hept{\begin{cases}\sqrt{x^2+1}=a\left(a\ge0\right)\\\sqrt{x^2-x+1}=b\left(b>0\right)\end{cases}}\)
Tìm được \(\orbr{\begin{cases}a=2b\\b=2a\end{cases}}\)
TH1: a=2b => phương trình vô nghiệm
TH2: b=2a ta được \(x_1=\frac{5+\sqrt{37}}{2};x_2=\frac{5-\sqrt{37}}{2}\left(tmđk\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow x^2+4+2x=3\sqrt{x\left(x^2+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{x^2+4}=b>0\end{matrix}\right.\)
\(\Rightarrow b^2+2a^2=3ab\)
\(\Leftrightarrow2a^2-3ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\b=2a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x^2+4}=2\sqrt{x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2-4x+4=0\end{matrix}\right.\) \(\Rightarrow x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 3(x2 + x)2 – 2(x2 + x) – 1 = 0. Đặt t = x2 + x, ta có:
3t2 – 2t – 1 = 0; t1 = 1, t2 =
Với t1 = 1, ta có: x2 + x = 1 hay x2 + x – 1 = 0, ∆ = 4 + 1 = 5, √∆ = √5
x1 = , x2 =
Với t2 = , ta có: x2 + x =
hay 3x2 + 3x + 1 = 0:
Phương trình vô nghiệm, vì ∆ = 9 – 4 . 3 . 1 = -3 < 0
Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =
b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0
Đặt t = x2 – 4x + 2, ta có phương trình t2 + t – 6 = 0
Giải ra ta được t1 = 2, t2 = -3.
- Với t1 = 2 ta có: x2 – 4x + 2 = 2 hay x2 – 4x = 0. Suy ra x1 = 0, x2 = 4.
- Với t1 = -3, ta có: x2 – 4x + 2 = -3 hay x2 – 4x + 5 = 0.
Phương trình này vô nghiệm vì ∆ = (-4)2 – 4 . 1 . 5 = 16 – 20 = -4 < 0
Vậy phương trình đã cho có hai nghiệm: x1 = 0, x2 = 4.
c) x - √x = 5√x + 7 ⇔ x - 6√x – 7 = 0. Điều kiện: x ≥ 0. Đặt t = √x, t ≥ 0
Ta có: t2 – 6t – 7 = 0. Suy ra: t1 = -1 (loại), t2 = 7
Với t = 7, ta có: √x = 7. Suy ra x = 49.
Vậy phương trình đã cho có một nghiệm: x = 49
d) – 10 .
= 3. Điều kiện: x ≠ -1, x ≠ 0
Đặt = t, ta có:
=
. Vậy ta có phương trình: t -
– 3 = 0
hay: t2 – 3t – 10 = 0. Suy ra t1 = 5, t2 = -2.
- Với t1 = 5, ta có = 5 hay x = 5x + 5. Suy ra x =
- Với t2 = -2, ta có = -2 hay x = -2x – 2. Suy ra x =
.
Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =
\(x^4+x^2+4x-3=0\)
\(\Leftrightarrow x^4+2x^2+1-x^2+4x-4=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x^2+1-x+2\right)\left(x^2+1+x-2\right)=0\)
\(\Leftrightarrow\left(x^2-x+3\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow x^2+x-1=0\)
\(\Leftrightarrow x=\dfrac{-1\pm\sqrt{5}}{2}\)
anh làm kiểu như thế này được ko:
\(ã^4+bx^2++cx+d=0\)
\(\Leftrightarrow x^4+\dfrac{b}{a}x^2+\dfrac{c}{a}x+\dfrac{d}{a}=0\)
\(\Leftrightarrow\left(x^4+2yx^2+y^2\right)-2yx^2-y^2+\dfrac{b}{a}x^2+\dfrac{c}{a}x+\dfrac{d}{a}=0\)
\(\Leftrightarrow\left(x^2+y\right)^2+\left(\dfrac{b}{a}-2y\right).x^2+\dfrac{c}{a}x+\dfrac{d}{a}-y^2=0\)
Ta tìm y: \(\left(\dfrac{b}{a}-2y\right).x^2+\dfrac{c}{a}x+\dfrac{d}{a}-y^2\)
\(=m\left(gx+h\right)^2\)