Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6x^2+13x-5=0\)
\(\Leftrightarrow6x^2-2x+15x-5=0\)
\(\Leftrightarrow2x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-5\\3x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=\frac{1}{3}\end{cases}}}\)
Vậy tập nghiệm của phương trình là: \(S=\left\{\frac{-5}{2};\frac{1}{3}\right\}\)
pt<=>căn((x-1/2)^2+75/4)+căn(2(x-1/2)^2+3(x+2)^2)+căn((x-1/2)^2+3(2x+3/2)^2)>=3*căn3(x+2)
dấu = xãy ra khi x=1/2
Câu 1:
Đặt \(3x-16y-24=k\left(k\in N\right)\) khi đó:
\(\sqrt{9x^2+16x+32}=k\Rightarrow9x^2+16x+32=k^2\)
\(\Rightarrow9\left(x+\dfrac{8}{9}\right)^2+\dfrac{224}{9}=k^2\)
\(\Rightarrow\dfrac{1}{9}\left(\left(9x+8\right)^2-9k^2\right)=-\dfrac{224}{9}\)
\(\Rightarrow\left(9x+8+3k\right)\left(9x+8-3k\right)=-224\)
tự giải nốt
Câu 2:
\(4x^3+5x^2+1=\sqrt{3x+1}-3x\)
\(\Leftrightarrow4x^3+5x^2+3x+1=\sqrt{3x+1}\)
\(\Leftrightarrow 16x^6+40x^5+49x^4+38x^3+19x^2+6x+1=3x+1\)
\(\Leftrightarow x(4x+1)(4x^4+9x^3+10x^2+7x+3)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Bài 1 bạn tìm quanh quanh đây, mình thấy có bài y hệt rồi nên ko làm nữa
Bài 2 như sau:
ĐKXĐ: \(x\ge\dfrac{-1}{16}\)
\(x^2-x-20-2\left(\sqrt{16x+1}-9\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-2\dfrac{\left(\sqrt{16x+1}-9\right)\left(\sqrt{16x+1}+9\right)}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\dfrac{32\left(x-5\right)}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4-\dfrac{32}{\sqrt{16x+1}+9}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\Rightarrow x=5\\x+4-\dfrac{32}{\sqrt{16x+1}+9}=0\left(1\right)\end{matrix}\right.\)
Xét phương trình (1): ta có \(x+4\ge-\dfrac{1}{16}+4=\dfrac{63}{16}\) \(\forall x\ge-\dfrac{1}{16}\)
\(\sqrt{16x+1}+9\ge9\Rightarrow\dfrac{32}{\sqrt{16x+1}+9}\le\dfrac{32}{9}\) \(\forall x\ge-\dfrac{1}{16}\)
Mà \(\dfrac{63}{16}-\dfrac{32}{9}=\dfrac{55}{144}>0\) \(\Rightarrow x+4-\dfrac{32}{\sqrt{16x+1}+9}>0\) \(\forall x\ge-\dfrac{1}{16}\)
\(\Rightarrow\) pt (1) vô nghiệm
Vậy pt đã cho có nghiệm duy nhất \(x=5\)