Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có:
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
\(\Leftrightarrow\frac{\sqrt{x^2+3}-2\sqrt{x}}{\sqrt{x}}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\sqrt{x^3+3x}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\\sqrt{x^3+3x}+2x=2\left(x+1\right)\end{cases}}\)
+) \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
+) \(\sqrt{x^3+3x}+2x=2x+2\Rightarrow x=1\)
a/ Đặt \(\sqrt{2\left(x^2-x\right)}=a\)
\(\Rightarrow a^4-2a^2=a\)
\(\Leftrightarrow a\left(a+1\right)\left(a^2-a-1\right)=0\)
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
\(\sqrt{x-2}-3\sqrt{x^2-4}=0\left(x\ge2\right)\)
\(\Leftrightarrow\sqrt{x-2}-3\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
(+) x - 2 = 0
<=> x = 2 (nhận)
(+) \(1-3\sqrt{x+2}=0\)
\(\Leftrightarrow9\left(x+2\right)=1\)
\(\Leftrightarrow x=\dfrac{1}{9}-2\)
\(\Leftrightarrow x=-\dfrac{17}{9}\) (loại)
a) Bình phương lên thôi
Đk: \(x\ge1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Rightarrow\left(x-1\right)+\left(5x-1\right)-2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x-2\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x\)
\(\Leftrightarrow4\left(x-1\right)\left(5x-1\right)=9x^2\) (vì \(x\ge1\))
\(\Leftrightarrow11x^2-24x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{11}\end{matrix}\right.\)
Thử lại thấy ko thỏa mãn
Vậy pt vô nghiệm.
để mk làm cho ; bài này dùng liên hợp
pt<=> \(x+1-\sqrt{x^2-2x+5}+2x+4-2\sqrt{4x+5}+x^3-2x^2+2x-1=0\) ( ĐKXĐ: \(x\ge-\frac{5}{4}\))
<=> \(\frac{x^2+2x+1-\left(x^2-2x+5\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{\left(2x+4\right)^2-4\left(4x+5\right)}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=>: \(\frac{x^2+2x+1-x^2+2x-5}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2+16x+16-16x-20}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\frac{4x-4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2-4}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\left(x-1\right)\left(\frac{4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x+4}{2x+4+2\sqrt{4x+5}}+x^2-x+1\right)=0\)
<=> x=1 ( vì \(x\ge-\frac{5}{4}\)nên cái trong ngoặc thứ 2 khác 0)
vậy x=1
tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,
Akai Haruma, @Nguyễn Việt Lâm
giúp mk vs! ngày mai phải nộp r
t muốn cách làm hơn