Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
Bài 1:
\(y'=3\left(x+m\right)^2+3\left(x+n\right)^2-3x^2\)
\(y'=3\left(x^2+2mx+m^2\right)+3\left(x^2+2nx+n^2\right)-3x^2\)
\(y'=3\left(x^2+2\left(m+n\right)x+m^2+n^2\right)\)
Để hàm số đồng biến trên R \(\Leftrightarrow y'\ge0\) \(\forall x\in R\)
\(\Rightarrow\Delta'=\left(m+n\right)^2-\left(m^2+n^2\right)\le0\) \(\Rightarrow mn\le0\)
\(P=4\left(m+n\right)^2-\left(m+n\right)-8mn\ge4\left(m+n\right)^2-\left(m+n\right)\ge-\frac{1}{16}\)
Bài 2: Đề bài rất kì quặc
Mình nghĩ cách giải sẽ như sau: nhận thấy \(z=0\) ko phải nghiệm nên chia 2 vế cho \(z^3\):
\(z^3+2016z^2+2017z+2018+\frac{2017}{z}+\frac{2016}{z^2}+\frac{1}{z^3}=0\)
\(\Leftrightarrow z^3+\frac{1}{z^3}+2016\left(z^2+\frac{1}{z^2}\right)+2017\left(z+\frac{1}{z}\right)+2018=0\)
Đặt \(z+\frac{1}{z}=a\Rightarrow\left\{{}\begin{matrix}a^2=z^2+\frac{1}{z^2}+2\Rightarrow z^2+\frac{1}{z^2}=a^2-2\\a^3=z^3+\frac{1}{z^3}+3\left(z+\frac{1}{z}\right)\Rightarrow z^3+\frac{1}{z^3}=a^3-3a\end{matrix}\right.\)
\(\Rightarrow a^3-3a+2016\left(a^2-2\right)+2017a+2018=0\)
\(\Leftrightarrow a^3+2016a^2+2014a-2014=0\)
Đặt \(f\left(a\right)=a^3+2016a^2+2014a-2014\)
\(f\left(-2015\right)=1\) ; \(f\left(-2016\right)=...< 0\)
\(\Rightarrow f\left(-2015\right).f\left(-2016\right)< 0\Rightarrow\) phương trình luôn có ít nhất một nghiệm \(a_0\in\left(-2016;-2015\right)\)
Khi đó ta có: \(z+\frac{1}{z}=a_0\Rightarrow z^2-a_0z+1=0\)
\(\Delta=a_0^2-4>0\) do \(a_0\in\left(-2016;-2015\right)\) nên \(a_0^2>2015^2>4\)
\(\Rightarrow\) Phương trình đã cho có ít nhất 2 nghiệm thực nên ko thể có 6 nghiệm phức
\(\Rightarrow\) Đề bài sai :(
chết máy lag ấn hơi nhiều vào chữ Gửi câu hỏi thành ra phá diễn đàn
a) (3 + 2i)z – (4 + 7i) = 2 – 5i
⇔(3+2i)z=6+2i
<=> z = \(\dfrac{\text{6 + 2 i}}{\text{3 + 2 i}}\) = \(\dfrac{22}{13}\) - \(\dfrac{6}{13}\)i
b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z
⇔(7−3i−5+4i)=−2−3i
⇔z= \(\dfrac{\text{− 2 − 3 i}}{\text{2 + i}}\) = \(\dfrac{-7}{5}\) - \(\dfrac{4}{5}i\)
c) z2 – 2z + 13 = 0
⇔ (z – 1)2 = -12 ⇔ z = 1 ± 2 √3 i
d) z4 – z2 – 6 = 0
⇔ (z2 – 3)(z2 + 2) = 0
⇔ z ∈ { √3, - √3, √2i, - √2i}
a) Đặt Z = z2 , ta được phương trình Z2 + Z – 6 = 0
Phương trình này có hai nghiệm là Z1 = 2, Z2 = -3
Vậy phương trình có bốn nghiệm là ± √2 và ± i√3.
b) Đặt Z = z2 , ta được phương trình Z2 + 7Z + 10 = 0
Phương trình này có hai nghiệm là Z1 = -5, Z2 = -2
Vậy phương trình có bốn nghiệm là ± i√2 và ± i√5.
a) 3z2 + 7z + 8 = 0 có Δ = 49 – 4.3.8 = -47
Vậy phương trình có hai nghiệm là: z1,2=−7±i√476z1,2=−7±i476
b) z4 – 8 = 0
Đặt Z = z2, ta được phương trình : Z2 – 8 = 0
Suy ra: Z = ± √8
Vậy phương trình đã cho có 4 nghiệm là: z1,2=±4√8,z3,4=±i4√8z1,2=±84,z3,4=±i84
c) z4 – 1 = 0 ⇔ (z2 – 1)(z2 + 1) = 0
Vậy phương trình đã cho có 4 nghiệm là ±1 và ±i
Chọn C.
Không mất tính tổng quát ta gọi 4 nghiệm của phương trình là:
z1= 1; z2= - 2; z3= 1+ i và z4 = 1 - i
Thay vào biểu thức
\(z^2-2\left(2m-1\right)z+m^2=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}z_1+z_2=-\dfrac{b}{a}=2\left(2m-1\right)=4m-2\\z_1z_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)
Ta có :
\(z^2_1+z_2^2=2\)
\(\Leftrightarrow\left(z_1+z_2\right)^2-2z_1z_2=2\)
\(\Leftrightarrow\left(4m-2\right)^2-2m^2-2=0\)
\(\Leftrightarrow16m^2-16m+4-2m^2-2=0\)
\(\Leftrightarrow14m^2-16m+2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{1}{7}\end{matrix}\right.\)
Ta có phương trình bậc hai trên tập số phức:
z^2 - 2(2m-1)z + m^2 = 0
Theo định lý giá trị trung bình, nếu z1 và z2 là nghiệm của phương trình trên, thì ta có:
z1 + z2 = 2(2m-1) và z1z2 = m^2
Từ phương trình z1^2 + z2^2 = 2, ta suy ra:
(z1+z2)^2 - 2z1z2 = 4
Thay z1+z2 và z1z2 bằng các giá trị đã biết vào, ta được:
(2(2m-1))^2 - 2m^2 = 4
Đơn giản hóa biểu thức ta có:
m^2 - 4m + 1 = 0
Suy ra:
m = 2 + √3 hoặc m = 2 - √3
Vậy, để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, ta cần phải có m = 2 + √3 hoặc m = 2 - √3.
Kết luận: Có hai giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, đó là m = 2 + √3 hoặc m = 2 - √3.
Đáp án A