Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
\(\left(3x-5\right)\left(x+8\right)+8x\left(3x-5\right)=0\)
=>(3x-5)(9x+8)=0
=>x=5/3 hoặc x=-9/8
\(x_1-x_2=\dfrac{5}{3}+\dfrac{9}{8}=\dfrac{40}{24}+\dfrac{27}{24}=\dfrac{67}{24}\)
Ta có: \(x^2-2\left(m+1\right)x+m-4=0\)
Phương trình có hai nghiệm phân biệt khi △'>0\(\Leftrightarrow\left(m+1\right)^2-m+4>0\Leftrightarrow m^2+m+5>0\)(luôn đúng)
Theo Vi-ét \(x_1+x_2=2\left(m+1\right);x_1x_2=m-4\)
\(A=x_1+x_2-2x_1x_2+2021=2\left(m+1\right)-2\left(m-4\right)+2021=2031\) không phụ thuộc vào m
Theo định lý Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=2m-2\end{matrix}\right.\)
Ta có: \(x_1^2+2\left(m+1\right)x_2+2m-2\)\(=x1^2+x_1+x_2.x_2+x_1.x_2\)
\(=x_1^2+2x_1x_2+x_2^2=\left(x_1+x_2\right)^2\) \(=\left[2\left(m+1\right)\right]^2=4\left(m+1\right)^2\)
Ta có: \(4\left(m+1\right)^2=9\Leftrightarrow\left(m+1\right)^2=\dfrac{9}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}m+1=\dfrac{3}{2}\\m+1=\dfrac{-3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=\dfrac{-5}{2}\end{matrix}\right.\)
Vậy \(m=\dfrac{1}{2};m=\dfrac{-5}{2}\) thoả mãn yêu cầu đề bài
Dấu bằng thứ nhất sau chữ ta có đầu tiên sửa thành: \(x_1^2+\left(x_1+x_2\right).x_2+x_1x_2\)
để pt có 2 nghiệm thì delta>=0 nên m>=-1
theo viet suy ra x1+x2=2m+2;x1*x2=m^2-1
x1^2+x2^2=(x1+x2)^2-2x1*x2=4m^2+8m+4-2m^2+2=2m^2+8m+6=2(m+1)^2+4m+6>=4*(-1)+6=2
nên gtnn bằng 2+5=7 khi x=-1
Lời giải:
Theo định lý Viet thì ta có:
$x_1+x_2=-1$
$x_1x_2=-2+\sqrt{2}$
Khi đó:
$D=(x_1+x_2)^3-3x_1x_2(x_1+x_2)=(-1)^3-3(-2+\sqrt{2})(-1)$
$=-1+3(-2+\sqrt{2})=-7+3\sqrt{2}$