K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Cho dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng :

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{a+\sqrt{a^2-12b}}{6}\\x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{a-\sqrt{a^2-12b}}{6}\end{cases}}\)

Khi đó x1 + x2 = \(\frac{a+\sqrt{a^2-12b}}{6}+\frac{a-\sqrt{a^2-12b}}{6}=\frac{a+\sqrt{a^2-12b}+a-\sqrt{a^2-12b}}{6}=\frac{2a}{6}=\frac{a}{3}\)

14 tháng 1 2021

Theo Viet thì \(x_1+x_2=-\frac{-a}{3}=\frac{a}{3}\)

10 tháng 9 2018

Áp dụng hệ thức Vi-et ta có:

S   =   x 1   +   x 2   =   - ( - a / 3 )   =   a / 3

Vậy chọn đáp án B

26 tháng 1 2017

Áp dụng hệ thức Vi-et ta có:

S   =   x 1   +   x 2   =   - ( - a / 3 )   =   a / 3

Vậy chọn đáp án B

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

31 tháng 5 2021

\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)

a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)

         \(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)

         \(< =>4m^2-8m+4+24m+28\)   

          \(< =>4m^2+16m+32\)

          \(< =>\left(2m+4\right)^2+16>0\)     với mọi m

Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m

b) Theo định lí vi ét ta có:

x1+x2\(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)

x1x2\(-6m-7\)

 

            

22 tháng 4 2023

quy đồng

khử mẫu

tách sao cho có tích và tổng

thay x1x2 x1+x2

kết luận

mặt xấu vl . . .oe

13 tháng 3 2022

Ta có: \(\Delta=5^2-5.3.1=25-12=13>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-1\end{matrix}\right.\)

\(K=\left(3x_1-1\right)\left(3x_2-1\right)+3\\ =3x_1x_2-3x_2-3x_1+1+3=3.\left(-1\right)-3\left(x_1+x_2\right)+4\\ =-3+4-3\left(-5\right)\\ =1+15\\ =16\)

13 tháng 3 2022

dạ em cảm ơn nhưng mà

delta = b2 - 4ac ạ