K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

Ta có −4x + 3y = 8 ⇔ y = 4 x + 8 3 ⇔ y = x + x + 8 3

Đặt x + 8 3 = t ⇒ x = 3t – 8 ⇒ y = 3t – 8 + ty = 4t – 8 ( )

Nên nghiệm nguyên của phương trình là  x = 3 t − 8 y = 4 t − 8 t ∈ ℤ

Vì x, y nguyên dương nên  x > 0 y > 0 ⇒ 3 t − 8 > 0 4 t − 8 > 0 ⇒ t > 8 3 t > 2 ⇒ t > 8 3

mà  t ∈ ℤ ⇒ t ≥ 3

Nghiệm nguyên dương nhỏ nhất của phương trình là  x = 3.3 − 8 y = 4.3 − 8 ⇔ x = 1 y = 4

⇒ x + y = 5

Đáp án: A

Giải các hệ phương trình sau bằng phương pháp thế:a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)Bài giảia) Từ phương trình \(x-y=3\Rightarrow x=3+y\)Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được:  \(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)                                       ...
Đọc tiếp

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)

b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)

b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)

Bài giải

a) Từ phương trình \(x-y=3\Rightarrow x=3+y\)

Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được: 

 

\(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)

                                          \(\Leftrightarrow-y=-7\Leftrightarrow y=7\)

Thay \(y=7\) vào \(x=3\) ta được: 

\(x=3+7=10\)

Vậy: Hệ phương trình có nghiệm: \(\left(10;7\right)\)

b) Từ phương trình \(4x+y=2\Rightarrow y=2-4x\)

Thay \(y=2-4x\)vào phương trình \(7x-3y=5\)ta được:

\(7x-3\left(2-4x\right)=5\Leftrightarrow7x-6+12x=5\)

                                             \(\Leftrightarrow19x=11\Leftrightarrow x=\frac{11}{19}\)

Thay \(x=\frac{11}{19}\)vào \(y=2-4x\)ta được \(y=2-4.\frac{11}{19}=2-\frac{44}{19}=-\frac{6}{19}\)

Vậy: Hệ phương trình có nghiệm \(\left(\frac{11}{19};-\frac{6}{11}\right)\)

c) Từ phương trình \(x+3y=-2\Rightarrow x=-2-3y\)

Thay \(x=-2-3x\)vào phương trình \(5x-4y=11\)ta được

\(5\left(-2-3y\right)-4y=11\Leftrightarrow-10-15y-4y=11\)

                                                    \(\Leftrightarrow-19=21\Leftrightarrow y=-\frac{21}{19}\)

Thay \(y=-\frac{21}{19}\)vào \(x=-2-3y\)ta được \(x=-2-3\left(-\frac{21}{19}\right)=-2+\frac{69}{19}=\frac{25}{19}\)

Vậy: Hệ phương trình có nghiệm: \(\left(\frac{25}{19};-\frac{21}{19}\right)\)

1
21 tháng 1 2018

-guể viết lại làm gì man?

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
11 tháng 7 2017

câu a)

nhân cả 3 phương trình

ta được

\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)

Vế trái là 1 số chính phương nên Vp cũng là số chính phương

6 không phải là số chính phương nên

\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6

lập bảng 

đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa

câu b)

từ hpt =>5y+3=11z+7

<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R

y  nguyên dương nên (11z+4)thuộc bội(5) và z_min

=> z=1 

=> y=3

=> x =18 (t/m)

câu c)

qua pt (1) =>x=20-2y-3z

thay vao 2) <=> y+5z=23

y;z là nguyên dương mà 5z chia hêt cho 5 

=> z={1;2;3;4}

=> y={18;13;8;3}

=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé

chọn x=2; y=3; z=4 (t/m)

Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com

11 tháng 7 2017

Bạn giải nốt giùm mình câu a được ko?